Constructive Analysis of Eigenvalue Problems in Control under Numerical Uncertainty

被引:3
|
作者
Osinenko, Pavel [1 ]
Devadze, Grigory [1 ]
Streif, Stefan [1 ]
机构
[1] Tech Univ Chemnitz, Automat Control & Syst Dynam Lab, Reichenhainer Str 70, D-09126 Chemnitz, Germany
关键词
Approximate solutions; constructive analysis; eigenvalues; eigenvectors; fundamental theorem of algebra; SYSTEMS; VERIFICATION; DESIGN;
D O I
10.1007/s12555-018-0571-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The eigenvalue problem plays a central role in linear algebra and its applications in control and optimization methods. In particular, many matrix decompositions rely upon computation of eigenvalue-eigenvector pairs, such as diagonal or Jordan normal forms. Perturbation theory and various regularization techniques help address some numerical difficulties of computation eigenvectors, but often rely on per se uncomputable quantities, such as a minimal gap between eigenvalues. In this note, the eigenvalue problem is revisited within constructive analysis allowing to explicitly consider numerical uncertainty. Exact eigenvectors are substituted by approximate ones in a suitable format. Examples showing influence of computation precision are provided.
引用
收藏
页码:2177 / 2185
页数:9
相关论文
共 50 条
  • [21] Trajectory tubes in control and estimation problems under uncertainty
    Filippova, T. F.
    IUTAM Symposium on Dynamics and Control of Nonlinear Systems with Uncertainty, 2007, 2 : 55 - 64
  • [22] Preconditioners for robust optimal control problems under uncertainty
    Nobile, Fabio
    Vanzan, Tommaso
    NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2023, 30 (02)
  • [23] Sensitivity Analysis and Its Numerical Methods for Derivatives of Quadratic Eigenvalue Problems
    Chu, Delin
    Qian, Jiang
    Tan, Roger C. E.
    APPLICATIONS + PRACTICAL CONCEPTUALIZATION + MATHEMATICS = FRUITFUL INNOVATION, 2016, 11 : 235 - 245
  • [24] AN ANALYSIS OF STRUCTURE PRESERVING NUMERICAL-METHODS FOR SYMPLECTIC EIGENVALUE PROBLEMS
    FLASCHKA, U
    MEHRMANN, V
    ZYWIETZ, D
    RAIRO-AUTOMATIQUE-PRODUCTIQUE INFORMATIQUE INDUSTRIELLE-AUTOMATIC CONTROL PRODUCTION SYSTEMS, 1991, 25 (02): : 165 - 190
  • [25] Analysis of extremum value theorems for function spaces in optimal control under numerical uncertainty
    Osinenko, P.
    Streif, S.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2019, 36 (03) : 1015 - 1032
  • [26] Throughput Analysis Using Eigenvalue Based Spectrum Sensing Under Noise Uncertainty
    Kortun, Ayse
    Ratnarajah, Tharm
    Sellathurai, Mathini
    Liang, Ying-Chang
    Zeng, Yonghong
    2012 8TH INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING CONFERENCE (IWCMC), 2012, : 395 - 400
  • [27] Numerical Methods for General and Structured Eigenvalue Problems
    Parlett, Beresford
    SIAM REVIEW, 2010, 52 (04) : 771 - 774
  • [28] NUMERICAL-SOLUTION OF DIFFICULT EIGENVALUE PROBLEMS
    DAVEY, A
    JOURNAL OF COMPUTATIONAL PHYSICS, 1977, 24 (03) : 331 - 338
  • [29] ON THE NUMERICAL-SOLUTION OF NONLINEAR EIGENVALUE PROBLEMS
    ANDREW, AL
    CHU, KE
    LANCASTER, P
    COMPUTING, 1995, 55 (02) : 91 - 111
  • [30] NUMERICAL-SOLUTION OF MULTIPARAMETER EIGENVALUE PROBLEMS
    MULLER, RE
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1982, 62 (12): : 681 - 686