Constructive Analysis of Eigenvalue Problems in Control under Numerical Uncertainty

被引:3
|
作者
Osinenko, Pavel [1 ]
Devadze, Grigory [1 ]
Streif, Stefan [1 ]
机构
[1] Tech Univ Chemnitz, Automat Control & Syst Dynam Lab, Reichenhainer Str 70, D-09126 Chemnitz, Germany
关键词
Approximate solutions; constructive analysis; eigenvalues; eigenvectors; fundamental theorem of algebra; SYSTEMS; VERIFICATION; DESIGN;
D O I
10.1007/s12555-018-0571-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The eigenvalue problem plays a central role in linear algebra and its applications in control and optimization methods. In particular, many matrix decompositions rely upon computation of eigenvalue-eigenvector pairs, such as diagonal or Jordan normal forms. Perturbation theory and various regularization techniques help address some numerical difficulties of computation eigenvectors, but often rely on per se uncomputable quantities, such as a minimal gap between eigenvalues. In this note, the eigenvalue problem is revisited within constructive analysis allowing to explicitly consider numerical uncertainty. Exact eigenvectors are substituted by approximate ones in a suitable format. Examples showing influence of computation precision are provided.
引用
收藏
页码:2177 / 2185
页数:9
相关论文
共 50 条
  • [1] Constructive Analysis of Eigenvalue Problems in Control under Numerical Uncertainty
    Pavel Osinenko
    Grigory Devadze
    Stefan Streif
    International Journal of Control, Automation and Systems, 2020, 18 : 2177 - 2185
  • [2] Numerical methods for eigenvalue and control problems
    Mehrmann, V
    FRONTIERS IN NUMERICAL ANALYSIS, 2003, : 303 - 349
  • [3] Numerical Analysis of Nonlinear Eigenvalue Problems
    Eric Cancès
    Rachida Chakir
    Yvon Maday
    Journal of Scientific Computing, 2010, 45 : 90 - 117
  • [4] Numerical Analysis of Nonlinear Eigenvalue Problems
    Cances, Eric
    Chakir, Rachida
    Maday, Yvon
    JOURNAL OF SCIENTIFIC COMPUTING, 2010, 45 (1-3) : 90 - 117
  • [5] NUMERICAL-SOLUTION OF EIGENVALUE PROBLEMS IN CONTROL AND COMMUNICATION
    PETRIDIS, V
    INTERNATIONAL JOURNAL OF ELECTRONICS, 1977, 43 (04) : 377 - 385
  • [6] Constructive solutions for nonlinear multiparameter eigenvalue problems
    Amer, MA
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1998, 35 (11) : 83 - 90
  • [7] A Class of Control Problems Under Uncertainty
    Grigorenko N.L.
    Kamzolkin D.V.
    Luk’yanova L.N.
    Pivovarchuk D.G.
    Computational Mathematics and Modeling, 2016, 27 (3) : 290 - 301
  • [8] Symposium: Numerical Methods in Matrix Analysis and Eigenvalue Problems
    Di Napoli, Edoardo
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 932 - 932
  • [9] Numerical Methods for Eigenvalue Problems
    Bientinesi, Paolo
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2009 (ICCMSE 2009), 2012, 1504 : 1108 - 1108
  • [10] NUMERICAL SOLUTION OF EIGENVALUE PROBLEMS
    GOODMAN, TR
    MATHEMATICS OF COMPUTATION, 1965, 19 (91) : 462 - &