To the Problem of the Creation of High-Temperature Radio-Absorbing Composite Ceramic Materials

被引:0
|
作者
Lisachuk, G., V [1 ]
Kryvobok, R., V [1 ]
Lapuzina, O. M. [1 ]
Maystat, M. S. [1 ]
Kryvobok, N. A. [1 ]
Voloshuk, V. V. [1 ]
Gusarova, I. O. [2 ]
机构
[1] Natl Tech Univ, Kharkiv Polytech Inst, Kharkiv, Ukraine
[2] Yuzhnoye State Design Off, Dnipro, Ukraine
来源
PROCEEDINGS OF THE 2018 IEEE 8TH INTERNATIONAL CONFERENCE NANOMATERIALS: APPLICATION & PROPERTIES (NAP-2018) | 2018年
关键词
high-temperature radio-absorbing composite ceramics; gradient radio-absorbing material; dielectric permeability; strontium titanate; Slavsonite; microstructure; phase composition;
D O I
暂无
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The main directions in the creation of high-temperature radio-absorbing ceramic materials that can be used to create new functional materials for space, aerospace, electronic engineering and in medicine are considered in the article. A well-founded choice of a high-temperature dielectric matrix and ferroelectric additive for obtaining a gradient composite radio-absorbing material is carried out. The results of studies of the ferroelectric impurities concentration influence on the physical and dielectric properties of composite ceramics obtained for ceramic technology are presented. Based on the studies of the phase composition and microstructure of the composite ceramics compositions studied, it was possible to establish a relationship between the properties, the phase composition and the structure of the obtained ceramic materials with different values of the dielectric constant.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] CERAMIC-CERAMIC COMPOSITES - HIGH-TEMPERATURE, HIGH PERFORMANCES MATERIALS FOR THE FUTURE
    PIERRE, AC
    AERONAUTIQUE ASTRONAUTIQUE, 1979, (75): : 47 - 60
  • [32] High-Efficiency UHF Radio-Absorbing Composites Based on Iron Alloys
    Manegin S.Y.
    Sokolov A.L.
    Skachkov O.A.
    Steel in Translation, 2018, 48 (9) : 615 - 617
  • [33] Development of Multilayer Radio-Absorbing Materials Based on Nonwoven Dielectric Matrixes and a Polymeric Binder
    E. S. Bokova
    E. A. Devina
    G. M. Kovalenko
    Fibre Chemistry, 2019, 50 : 462 - 467
  • [34] Recent Progresses of High-Temperature Microwave-Absorbing Materials
    Jia, Zirui
    Lin, Kejun
    Wu, Guanglei
    Xing, Hui
    Wu, Hongjing
    NANO, 2018, 13 (06)
  • [35] HIGH-TEMPERATURE MATERIAL PROPERTIES OF CERAMIC PARTICLE COMPOSITE
    MORITA, Y
    OKAMURA, K
    KAWASHIMA, H
    SEGUCHI, M
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1989, 75 (09): : 1596 - 1603
  • [36] Development of New Ceramic Materials for High-Temperature Filters
    A. V. Aksenov
    O. A. Nekrashevich
    A. V. Bugaev
    Refractories and Industrial Ceramics, 2001, 42 : 310 - 312
  • [37] HIGH-TEMPERATURE ENERGY TECHNOLOGY APPLICATION FOR CERAMIC MATERIALS
    SLUYTER, MM
    AMERICAN CERAMIC SOCIETY BULLETIN, 1982, 61 (08): : 808 - 808
  • [38] Determination of the High-Temperature Strength of Ceramic Oxide Materials
    Basargin, O. V.
    Shcheglova, T. M.
    Kolyshev, S. G.
    Nikitina, V. Yu
    Maksimov, V. G.
    Babashov, V. G.
    GLASS AND CERAMICS, 2013, 70 (1-2) : 43 - 46
  • [39] PERFORMANCE OF CERAMIC MATERIALS IN HIGH-TEMPERATURE STEAM AND HYDROGEN
    HORN, FL
    FILLO, JA
    POWELL, JR
    JOURNAL OF NUCLEAR MATERIALS, 1979, 85-6 (DEC) : 439 - 443
  • [40] Determination of the High-Temperature Strength of Ceramic Oxide Materials
    O. V. Basargin
    T. M. Shcheglova
    S. G. Kolyshev
    V. Yu. Nikitina
    V. G. Maksimov
    V. G. Babashov
    Glass and Ceramics, 2013, 70 : 43 - 46