End-to-End Learned Image Compression with Augmented Normalizing Flows

被引:3
|
作者
Ho, Yung-Han [1 ]
Chan, Chih-Chun [1 ]
Peng, Wen-Hsiao [1 ,3 ]
Hang, Hsueh-Ming [2 ,3 ]
机构
[1] Natl Chiao Tung Univ, Comp Sci Dept, Hsinchu, Taiwan
[2] Natl Chiao Tung Univ, Elect Engn Dept, Hsinchu, Taiwan
[3] Natl Chiao Tung Univ, Pervas AI Res PAIR Labs, Hsinchu, Taiwan
关键词
D O I
10.1109/CVPRW53098.2021.00220
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new attempt at using augmented normalizing flows (ANF) for lossy image compression. ANF is a specific type of normalizing flow models that augment the input with an independent noise, allowing a smoother transformation from the augmented input space to the latent space. Inspired by the fact that ANF can offer greater expressivity by stacking multiple variational autoencoders (VAE), we generalize the popular VAE-based compression framework by the autoencoding transforms of ANF. When evaluated on Kodak dataset, our ANF-based model provides 3.4% higher BD-rate saving as compared with a VAE-based baseline that implements hyper-prior with mean prediction. Interestingly, it benefits even more from the incorporation of a post-processing network, showing 11.8% rate saving as compared to 6.0% with the baseline plus post-processing.
引用
收藏
页码:1931 / 1935
页数:5
相关论文
共 50 条
  • [31] End-to-End Image Patch Quality Assessment for Image/Video With Compression Artifacts
    Tung Thanh Pham
    Xiem Van Hoang
    Nghia Trung Nguyen
    Duong Trieu Dinh
    Le Thanh Ha
    IEEE ACCESS, 2020, 8 : 215157 - 215172
  • [32] End-to-End Learned Scalable Multilayer Feature Compression for Machine Vision Tasks
    Chen, Qiaoxi
    Gao, Changsheng
    Liu, Dong
    2024 DATA COMPRESSION CONFERENCE, DCC, 2024, : 550 - 550
  • [33] Compression of End-to-End Models
    Pang, Ruoming
    Sainath, Tara N.
    Prabhavalkar, Rohit
    Gupta, Suyog
    Wu, Yonghui
    Zhang, Shuyuan
    Chiu, Chung-cheng
    19TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2018), VOLS 1-6: SPEECH RESEARCH FOR EMERGING MARKETS IN MULTILINGUAL SOCIETIES, 2018, : 27 - 31
  • [34] End-to-end optimized image compression with the frequency-oriented transform
    Yuefeng Zhang
    Kai Lin
    Machine Vision and Applications, 2024, 35
  • [35] NN-based Embedment of Watermark in End-to-end Image Compression
    Lee, EunSeong
    Lee, Jongseok
    Seo, Young-Ho
    Sim, Donggyu
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY, IWAIT 2023, 2023, 12592
  • [36] New Results in End-to-end Image and Video Compression by Deep Learning
    Ozsoy, Gokberk
    Yilmaz, Melih
    Kirmemis, Ogun
    Tekalp, A. Murat
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,
  • [37] End-to-end optimized image compression with the frequency-oriented transform
    Zhang, Yuefeng
    Lin, Kai
    MACHINE VISION AND APPLICATIONS, 2024, 35 (02)
  • [38] End-to-End Facial Image Compression with Integrated Semantic Distortion Metric
    He, Tianyu
    Chen, Zhibo
    2018 IEEE INTERNATIONAL CONFERENCE ON VISUAL COMMUNICATIONS AND IMAGE PROCESSING (IEEE VCIP), 2018,
  • [39] Image Compression Based on Compressive Sensing: End-to-End Comparison With JPEG
    Yuan, Xin
    Haimi-Cohen, Raziel
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (11) : 2889 - 2904
  • [40] End-to-End Multispectral Image Compression Using Convolutional Neural Network
    Kong Fanqiang
    Zhou Yongbo
    Shen Qiu
    Wen Keyao
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2019, 46 (10):