All Schatten spaces endowed with the Schur product are Q-algebras

被引:7
|
作者
Briet, Jop [1 ,2 ]
Buhrman, Harry [1 ,2 ]
Lee, Troy [3 ]
Vidick, Thomas [4 ]
机构
[1] CWI, NL-1098 SJ Amsterdam, Netherlands
[2] Univ Amsterdam, NL-1098 SJ Amsterdam, Netherlands
[3] Ctr Quantum Technol, Singapore 117543, Singapore
[4] Univ Calif Berkeley, Div Comp Sci, Berkeley, CA 94720 USA
关键词
Schatten space; Schur product; Banach algebra; Q-algebra; INEQUALITY; OPERATORS; EXTENSIONS;
D O I
10.1016/j.jfa.2011.09.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the Banach algebra formed by the space of compact operators on a Hilbert space endowed with the Schur product is a quotient of a uniform algebra (also known as a Q-algebra). Together with a similar result of Perez-Garcia for the trace class, this completes the answer to a long-standing question of Varopoulos. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [21] METABELIAN LIE Q-ALGEBRAS
    Daniyarova, E. Yu
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2009, 6 : 26 - 48
  • [22] Q-ALGEBRAS WITHOUT INTERACTION
    SIAFARIKAS, P
    JANNUSSIS, A
    BRODIMAS, G
    PAPALOUCAS, L
    LETTERE AL NUOVO CIMENTO, 1983, 37 (03): : 119 - 123
  • [23] Representation theory for Q-algebras
    Niestegge, G
    HELVETICA PHYSICA ACTA, 1999, 72 (04): : 250 - 261
  • [24] On L-sub Q-algebras
    Saeid, Arsham Borumand
    Daneshpayeh, Roohallah
    Jahanpanah, Sirus
    Xin, Xiao Long
    Soft Computing, 2024, 28 (21) : 12477 - 12490
  • [25] A Representation Theorem for Girard Q-Algebras'
    Wang, Kaiyun
    Zhao, Bin
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2017, 29 (1-2) : 25 - 41
  • [26] A characterization of Q-algebras of type F
    Zelazko, W
    STUDIA MATHEMATICA, 2004, 165 (01) : 73 - 79
  • [27] Finite dimensional semisimple Q-algebras
    Nakazi, Takahiko
    Yamamoto, Takanori
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 420 (2-3) : 407 - 423
  • [28] Invertibility in tensor products of Q-algebras
    Dineen, S
    Sevilla-Peris, P
    STUDIA MATHEMATICA, 2002, 153 (03) : 269 - 284
  • [29] Two-dimensional Q-algebras
    Nakazi, T
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 315 (1-3) : 197 - 205
  • [30] Connection between Q-algebras and noncanonical Heisenberg algebras
    Jannussis, A
    Brodimas, G
    MODERN PHYSICS LETTERS A, 2000, 15 (21) : 1385 - 1390