Schaefer-Krasnoselskii fixed point theorems using a usual measure of weak noncompactness

被引:40
|
作者
Garcia-Falset, J. [2 ]
Latrach, K. [1 ]
Moreno-Galvez, E. [3 ]
Taoudi, M. -A. [4 ]
机构
[1] Univ Blaise Pascal, Math Lab, F-63177 Aubiere, France
[2] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
[3] Univ Catolica Valencia San Vicente Martir, Dept Matemat Ciencias Nat & Ciencias Sociales Apl, Valencia 46100, Spain
[4] Univ Cadi Ayyad, Lab Math & Syst Dynam, Marrakech, Morocco
关键词
Krasnoselskii fixed point theorem; Measure of weak noncompactness; Nonlinear integral equations; EXISTENCE; SUM; OPERATORS;
D O I
10.1016/j.jde.2011.11.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some extension of a well-known fixed point theorem due to Burton and Kirk [T.A. Burton, C. Kirk, A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr. 189 (1998) 423-431] for the sum of two nonlinear operators one of them compact and the other one a strict contraction. The novelty of our results is that the involved operators need not to be weakly continuous. Finally, an example is given to illustrate our results. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3436 / 3452
页数:17
相关论文
共 50 条
  • [31] Tripled fixed point results via a measure of noncompactness with applications
    Nashine, Hemant Kumar
    Arab, Reza
    Ibrahim, Rabha W.
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (02)
  • [32] Measure of Noncompactness and JS']JS-Presic Fixed Point Theorems and Its Applications to a System of Integral Equations
    Parvaneh, Mohsen
    Farajzadeh, Ali
    [J]. FILOMAT, 2021, 35 (09) : 3091 - 3104
  • [33] Multivalued types of Krasnoselskii’s fixed point theorem for weak topology
    Temel, Cesim
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2019, 81 (02): : 139 - 148
  • [34] MULTIVALUED TYPES OF KRASNOSELSKII'S FIXED POINT THEOREM FOR WEAK TOPOLOGY
    Temel, Cesim
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2019, 81 (02): : 139 - 148
  • [35] EXPANSIVE KRASNOSELSKII-TYPE FIXED POINT THEOREMS AND APPLICATIONS TO DIFFFERENTIAL INCLUSIONS
    Boudaoui, Ahmed
    Bahidi, Fatima
    Caraballo, Tomas
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2019, 2019
  • [36] TRIPLE FIXED POINT THEOREMS FOR WEAK (ψ-φ)-CONTRACTIONS
    Karapinar, Erdal
    Sadarangani, Kishin
    [J]. JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2013, 15 (05) : 844 - 851
  • [37] Weak reciprocal continuity and fixed point theorems
    Pant R.P.
    Bisht R.K.
    Arora D.
    [J]. ANNALI DELL'UNIVERSITA' DI FERRARA, 2011, 57 (1) : 181 - 190
  • [38] FIXED POINT THEOREMS FOR MULTIVALUED WEAK CONTRACTIONS
    Filip, Alexandru-Darius
    Petru, Petra Tunde
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2009, 54 (03): : 33 - 40
  • [39] A NEW GENERAL MEASURE OF NONCOMPACTNESS AND FIXED POINT THEOREM FOR CONDENSING OPERATORS
    Pham, Van Hien
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2024, 2024
  • [40] A FIXED POINT THEOREM OF KRASNOSELSKII-SCHAEFER TYPE AND ITS APPLICATIONS IN CONTROL AND PERIODICITY OF INTEGRAL EQUATIONS
    Gao, Hang
    Li, Yong
    Zhang, Bo
    [J]. FIXED POINT THEORY, 2011, 12 (01): : 91 - 112