Schaefer-Krasnoselskii fixed point theorems using a usual measure of weak noncompactness

被引:40
|
作者
Garcia-Falset, J. [2 ]
Latrach, K. [1 ]
Moreno-Galvez, E. [3 ]
Taoudi, M. -A. [4 ]
机构
[1] Univ Blaise Pascal, Math Lab, F-63177 Aubiere, France
[2] Univ Valencia, Dept Anal Matemat, E-46100 Valencia, Spain
[3] Univ Catolica Valencia San Vicente Martir, Dept Matemat Ciencias Nat & Ciencias Sociales Apl, Valencia 46100, Spain
[4] Univ Cadi Ayyad, Lab Math & Syst Dynam, Marrakech, Morocco
关键词
Krasnoselskii fixed point theorem; Measure of weak noncompactness; Nonlinear integral equations; EXISTENCE; SUM; OPERATORS;
D O I
10.1016/j.jde.2011.11.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present some extension of a well-known fixed point theorem due to Burton and Kirk [T.A. Burton, C. Kirk, A fixed point theorem of Krasnoselskii-Schaefer type, Math. Nachr. 189 (1998) 423-431] for the sum of two nonlinear operators one of them compact and the other one a strict contraction. The novelty of our results is that the involved operators need not to be weakly continuous. Finally, an example is given to illustrate our results. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:3436 / 3452
页数:17
相关论文
共 50 条
  • [1] Multivalued fixed point theorems in terms of weak topology and measure of weak noncompactness
    Cardinali, Tiziana
    Rubbioni, Paola
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 405 (02) : 409 - 415
  • [2] Measure of Weak Noncompactness and Fixed Point Theorems in Banach Algebras with Applications
    Farid, Mohamed Amine
    Chaira, Karim
    Marhrani, El Miloudi
    Aamri, Mohamed
    [J]. AXIOMS, 2019, 8 (04)
  • [3] Fractional equations and generalizations of Schaefer's and Krasnoselskii's fixed point theorems
    Burton, T. A.
    Zhang, Bo
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (18) : 6485 - 6495
  • [4] COMMON FIXED POINT THEOREMS VIA MEASURE OF NONCOMPACTNESS
    Khodabakhshi, Neda
    Vaezpour, S. Mansour
    [J]. FIXED POINT THEORY, 2016, 17 (02): : 381 - 386
  • [5] CRITICAL TYPES OF KRASNOSELSKII FIXED POINT THEOREMS IN WEAK TOPOLOGIES
    Ben Amar, Afif
    Xiang, Tian
    [J]. QUAESTIONES MATHEMATICAE, 2015, 38 (06) : 805 - 816
  • [6] A fixed point theorem of Krasnoselskii-Schaefer type
    Burton, TA
    Kirk, C
    [J]. MATHEMATISCHE NACHRICHTEN, 1998, 189 : 23 - 31
  • [7] Integrable Solutions of a Nonlinear Integral Equation via Noncompactness Measure and Krasnoselskii's Fixed Point Theorem
    Bousselsal, Mahmoud
    Jah, Sidi Hamidou
    [J]. INTERNATIONAL JOURNAL OF ANALYSIS, 2014,
  • [8] Some fixed point theorems via measure of noncompactness with applications to differential equations
    Shahram Banaei
    Mohammad Mursaleen
    Vahid Parvaneh
    [J]. Computational and Applied Mathematics, 2020, 39
  • [9] Krasnoselskii type fixed point theorems and applications
    Liu, Yicheng
    Li, Zhixiang
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (04) : 1213 - 1220
  • [10] Some fixed point theorems via measure of noncompactness with applications to differential equations
    Banaei, Shahram
    Mursaleen, Mohammad
    Parvaneh, Vahid
    [J]. COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):