Cluster recursion method of a non-orthogonal basis

被引:5
|
作者
Obata, S
MasudaJindo, K
机构
[1] TOKYO DENKI UNIV,FAC SCI & ENGN,PHYS LAB,HATOYAMA,SAITAMA 35003,JAPAN
[2] TOKYO INST TECHNOL,DEPT MAT SCI & ENGN,MIDORI KU,YOKOHAMA,KANAGAWA 227,JAPAN
关键词
D O I
10.1016/0927-0256(96)00040-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We propose a new recursion algorithm which is applicable to the electronic structure calculations of disordered materials using a non-orthogonal basis (NOB) set. This recursion approach is based on matrix algebra (modified Householder method) and takes central cluster states as 'initial states' of the calculation of the electronic Green functions. Some example calculations on the electronic density of states (DOS) of regular lattices are presented to demonstrate the applicability of the present method. It is shown that the NOB cluster recursion method is stable in numerical computations and practically does not produce any spurious or unphysical structures both for the site diagonal and intersite Green functions.
引用
收藏
页码:197 / 210
页数:14
相关论文
共 50 条
  • [41] A comparison of non-orthogonal and orthogonal fractal decoding
    Pi, MH
    Basu, A
    Mandal, M
    Li, H
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 505 - 508
  • [42] Orthogonal and non-orthogonal devices in polarization optics
    Tudor, Tiberiu
    SEVENTH INTERNATIONAL CONFERENCE ON CORRELATION OPTICS, 2006, 6254
  • [43] Real-space Kerker method for self-consistent calculation using non-orthogonal basis functions
    Shiihara, Yoshinori
    Kuwazuru, Osamu
    Yoshikawa, Nobuhiro
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2008, 16 (03)
  • [44] A CONSEQUENCE OF NON-ORTHOGONAL DATA
    LEWIS, JW
    ESCOBAR, LA
    GEEGHAN, JP
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1985, 22 (01) : 51 - 66
  • [45] Non-orthogonal tensor diagonalization
    Tichayskjy, Petr
    Anh-Huy Phan
    Cichocki, Andrzej
    SIGNAL PROCESSING, 2017, 138 : 313 - 320
  • [46] Projection method for 4d non-orthogonal hyperlattices
    S Jayanthi
    R K Mandal
    S Lele
    Pramana, 1997, 49 : 263 - 267
  • [47] Projection method for 4d non-orthogonal hyperlattices
    Jayanthi, S
    Mandal, RK
    Lele, S
    PRAMANA-JOURNAL OF PHYSICS, 1997, 49 (03): : 263 - 267
  • [48] NON-ORTHOGONAL ATOMIC ORBITALS
    CUSACHS, LC
    CHEMICAL PHYSICS LETTERS, 1975, 31 (01) : 154 - 156
  • [49] A method for non-orthogonal seismic polarization-vector separation
    Lei, J
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2005, 162 (03) : 965 - 974
  • [50] Efficient Calculation of Non-Orthogonal Partial Elements for the PEEC Method
    Muesing, A.
    Ekman, J.
    Kolar, J. W.
    IEEE TRANSACTIONS ON MAGNETICS, 2009, 45 (03) : 1140 - 1143