Dust-acoustic rogue waves in a nonextensive plasma

被引:184
|
作者
Moslem, W. M. [1 ,3 ]
Sabry, R. [1 ,2 ,4 ]
El-Labany, S. K. [2 ]
Shukla, P. K. [1 ,5 ]
机构
[1] Univ Bochum, Int Ctr Adv Studies Phys Sci, Fac Phys & Astron, D-44780 Bochum, Germany
[2] Mansoura Univ, Fac Sci, Dept Phys, Theoret Phys Grp,Damietta Branch, Dumyat 34517, Egypt
[3] Port Said Univ, Dept Phys, Fac Sci, Port Said, Egypt
[4] Salman bin Abdulaziz Univ, Dept Phys, Coll Sci & Humanitarian Studies, Alkharj, Saudi Arabia
[5] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
来源
PHYSICAL REVIEW E | 2011年 / 84卷 / 06期
关键词
PERTURBATION METHOD; SPACE; STATISTICS; PARTICLES; SOLITON;
D O I
10.1103/PhysRevE.84.066402
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present an investigation for the generation of a dust-acoustic rogue wave in a dusty plasma composed of negatively charged dust grains, as well as nonextensive electrons and ions. For this purpose, the reductive perturbation technique is used to obtain a nonlinear Schrodinger equation. The critical wave-number threshold k(c), which indicates where the modulational instability sets in, has been determined precisely for various regimes. Two different behaviors of k(c) against the nonextensive parameter q are found. For small k(c), it is found that increasing q would lead to an increase of k(c) until q approaches a certain value q(c), then further increase of q beyond q(c) decreases the value of k(c). For large k(c), the critical wave-number threshold k(c) is always increasing with q. Within the modulational instability region, a random perturbation of the amplitude grows and thus creates dust-acoustic rogue waves. In order to show that the characteristics of the rogue waves are influenced by the plasma parameters, the relevant numerical analysis of the appropriate nonlinear solution is presented. The nonlinear structure, as reported here, could be useful for controlling and maximizing highly energetic pulses in dusty plasmas.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Dust Flows in Nonlinear Dust-Acoustic Waves in Plasma
    Dubinov, A. E.
    Kitayev, I. N.
    [J]. HIGH TEMPERATURE, 2023, 61 (01) : 8 - 13
  • [32] Dust Flows in Nonlinear Dust-Acoustic Waves in Plasma
    A. E. Dubinov
    I. N. Kitayev
    [J]. High Temperature, 2023, 61 : 8 - 13
  • [33] Dust-acoustic Rossby waves in magnetized plasma
    R. E. Tolba
    A. Abdikian
    N. S. Alharthi
    M. E. Yahia
    W. M. Moslem
    [J]. The European Physical Journal Plus, 138
  • [34] Erratum to: Dust-acoustic solitary and rogue waves in a Thomas-Fermi degenerate dusty plasma
    M. Irfan
    S. Ali
    Arshad M. Mirza
    [J]. Astrophysics and Space Science, 2015, 358
  • [35] On the numerical solution of nonplanar dust-acoustic super rogue waves in a strongly coupled dusty plasma
    Almutalk, Salemah A.
    El-Tantawy, S. A.
    El-Awady, E. I.
    EI-Labany, S. K.
    [J]. PHYSICS LETTERS A, 2019, 383 (16) : 1937 - 1941
  • [36] Dust-acoustic Rossby waves in magnetized plasma
    Tolba, R. E.
    Abdikian, A.
    Alharthi, N. S.
    Yahia, M. E.
    Moslem, W. M.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (06):
  • [37] Dust-acoustic waves in a magnetized dusty plasma
    Salimullah, M
    Salahuddin, M
    [J]. PHYSICS OF PLASMAS, 1998, 5 (03) : 828 - 829
  • [38] Dust-acoustic waves in strongly coupled dusty plasmas with nonextensive electrons and ions
    El-Awady, E. I.
    Djebli, M.
    [J]. CANADIAN JOURNAL OF PHYSICS, 2012, 90 (07) : 675 - 681
  • [40] Finite element analysis of plasma dust-acoustic waves
    Areias, P.
    Sikta, J. N.
    dos Santos, M. P.
    [J]. FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2018, 140 : 38 - 49