Gene set enrichment; a problem of pathways

被引:6
|
作者
Davies, Matthew N. [1 ]
Meaburn, Emma L. [2 ]
Schalkwyk, Leonard C.
机构
[1] Kings Coll London, Inst Psychiat, London SE5 8AF, England
[2] Univ London, Dept Psychol Sci, Birkbeck Coll, London WC1E 7HU, England
基金
英国医学研究理事会;
关键词
gene set enrichment; annotation database; gene expression data; machine learning; next generation sequencing; NETWORKS;
D O I
10.1093/bfgp/elq021
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Gene Set Enrichment (GSE) is a computational technique which determines whether a priori defined set of genes show statistically significant differential expression between two phenotypes. Currently, the gene sets used for GSE are derived from annotation or pathway databases, which often contain computationally based and unrepresentative data. Here, we propose a novel approach for the generation of comprehensive and biologically derived gene sets, deriving sets through the application of machine learning techniques to gene expression data. These gene sets can be produced for specific tissues, developmental stages or environments. They provide a powerful and functionally meaningful way in which to mine genomewide association and next generation sequencing data in order to identify disease-associated variants and pathways.
引用
收藏
页码:385 / 390
页数:6
相关论文
共 50 条
  • [31] Identification of key genes and pathways in duck fatty liver syndrome using gene set enrichment analysis
    Yang, Xue
    Lin, Hao
    Wang, Mengpan
    Huang, Xuebing
    Li, Kaichao
    Xia, Weiguang
    Zhang, Yanan
    Wang, Shuang
    Chen, Wei
    Zheng, Chuntian
    POULTRY SCIENCE, 2024, 103 (09)
  • [32] Screening Key Genes and Pathways in Glioma Based on Gene Set Enrichment Analysis and Meta-analysis
    Tang, Yanyan
    He, Wenwu
    Wei, Yunfei
    Qu, Zhanli
    Zeng, Jinming
    Qin, Chao
    JOURNAL OF MOLECULAR NEUROSCIENCE, 2013, 50 (02) : 324 - 332
  • [33] Gene set enrichment analysis provides insight into novel signalling pathways in breast cancer stem cells
    Murohashi, M.
    Hinohara, K.
    Kuroda, M.
    Isagawa, T.
    Tsuji, S.
    Kobayashi, S.
    Umezawa, K.
    Tojo, A.
    Aburatani, H.
    Gotoh, N.
    BRITISH JOURNAL OF CANCER, 2010, 102 (01) : 206 - 212
  • [34] Gene set enrichment analysis provides insight into novel signalling pathways in breast cancer stem cells
    M Murohashi
    K Hinohara
    M Kuroda
    T Isagawa
    S Tsuji
    S Kobayashi
    K Umezawa
    A Tojo
    H Aburatani
    N Gotoh
    British Journal of Cancer, 2010, 102 : 206 - 212
  • [35] Rigorous assessment of gene set enrichment tests
    Naeem, Haroon
    Zimmer, Ralf
    Tavakkolkhah, Pegah
    Kueffner, Robert
    BIOINFORMATICS, 2012, 28 (11) : 1480 - 1486
  • [36] GiANT: gene set uncertainty in enrichment analysis
    Schmid, Florian
    Schmid, Matthias
    Muessel, Christoph
    Straeng, J. Eric
    Buske, Christian
    Bullinger, Lars
    Kraus, Johann M.
    Kestler, Hans A.
    BIOINFORMATICS, 2016, 32 (12) : 1891 - 1894
  • [37] Improving the power of gene set enrichment analyses
    Joanna Roder
    Benjamin Linstid
    Carlos Oliveira
    BMC Bioinformatics, 20
  • [38] Comparative study of gene set enrichment methods
    Abatangelo, Luca
    Maglietta, Rosalia
    Distaso, Angela
    D'Addabbo, Annarita
    Creanza, Teresa Maria
    Mukherjee, Sayan
    Ancona, Nicola
    BMC BIOINFORMATICS, 2009, 10 : 275
  • [39] GeneTrail -: advanced gene set enrichment analysis
    Backes, Christina
    Keller, Andreas
    Kuentzer, Jan
    Kneissl, Benny
    Comtesse, Nicole
    Elnakady, Yasser A.
    Mueller, Rolf
    Meese, Eckart
    Lenhof, Hans-Peter
    NUCLEIC ACIDS RESEARCH, 2007, 35 : W186 - W192
  • [40] PAGE: Parametric Analysis of Gene Set Enrichment
    Seon-Young Kim
    David J Volsky
    BMC Bioinformatics, 6