Biomarker discovery for arsenic exposure using functional data. Analysis and feature learning of mass spectrometry proteomic data

被引:29
|
作者
Harezlak, Jaroslaw [1 ]
Wu, Michael C. [2 ]
Wang, Mike [3 ]
Schwartzman, Armin [2 ,4 ]
Christiani, David C. [3 ]
Lin, Xihong [2 ]
机构
[1] Indiana Univ, Sch Med, Dept Med, Indianapolis, IN 46202 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA
[4] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
关键词
D O I
10.1021/pr070491n
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Plasma biomarkers of exposure to environmental contaminants play an important role in early detection of disease. The emerging field of proteomics presents an attractive opportunity for candidate biomarker discovery, as it simultaneously measures and analyzes a large number of proteins. This article presents a case study for measuring arsenic concentrations in a population residing in an As-endemic region of Bangladesh using plasma protein expressions measured by SELDI-TOF mass spectrometry. We analyze the data using a unified statistical method based on functional learning to preprocess mass spectra and extract mass spectrometry (MS) features and to associate the selected MS features with arsenic exposure measurements. The task is challenging due to several factors, the high dimensionality of mass spectrometry data, complicated error structures, and a multiple comparison problem. We use nonparametric functional regression techniques for MS modeling, peak detection based on the significant zero-downcrossing method, and peak alignment using a warping algorithm. Our results show significant associations of arsenic exposure to either under- or overexpressions of 20 proteins.
引用
收藏
页码:217 / 224
页数:8
相关论文
共 50 条
  • [31] STATISTICAL ANALYSIS OF PROTEOMIC MASS SPECTROMETRY DATA FOR THE IDENTIFICATION OF BIOMARKERS AND DISEASE DIAGNOSIS
    Stanford, Tyman E.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2016, 94 (02) : 345 - 346
  • [32] Informatics platform for global proteomic profiling and biomarker discovery using liquid chromatography-tandem mass spectrometry
    Radulovic, D
    Jelveh, S
    Ryu, S
    Hamilton, TG
    Foss, E
    Mao, YY
    Emili, A
    MOLECULAR & CELLULAR PROTEOMICS, 2004, 3 (10) : 984 - 997
  • [33] Feature Selection Methods for Early Predictive Biomarker Discovery Using Untargeted Metabolomic Data
    Grissa, Dhouha
    Petera, Melanie
    Brandolini, Marion
    Napoli, Amedeo
    Comte, Blandine
    Pujos-Guillot, Estelle
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2016, 3
  • [34] sEnhanced Feature Selection for Biomarker Discovery in LC-MS Data using GP
    Ahmed, Soha
    Zhang, Mengjie
    Peng, Lifeng
    2013 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2013, : 584 - 591
  • [35] Protein mass spectra data analysis for clinical biomarker discovery: a global review
    Roy, Pascal
    Truntzer, Caroline
    Maucort-Boulch, Delphine
    Jouve, Thomas
    Molinari, Nicolas
    BRIEFINGS IN BIOINFORMATICS, 2011, 12 (02) : 176 - 186
  • [36] Biomarker Discovery in Human Trials Through the Analysis of Metabolomic, Proteomic, and RNA-seq Data
    Wampole, Matthew
    IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY-ANIMAL, 2017, 53 (07) : 660 - 660
  • [37] On Topological Analysis of fs-LIMS Data. Implications for in Situ Planetary Mass Spectrometry
    Lukmanov, Rustam A.
    Riedo, Andreas
    Wacey, David
    Ligterink, Niels F. W.
    Grimaudo, Valentine
    Tulej, Marek
    de Koning, Coenraad
    Neubeck, Anna
    Wurz, Peter
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2021, 4
  • [38] Analysis of premalignant pancreatic cancer mass spectrometry data for biomarker selection using a group search optimizer
    He, S.
    Cooper, H. J.
    Ward, D. G.
    Yao, X.
    Heath, J. K.
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2012, 34 (06) : 668 - 676
  • [39] Biomarker discovery studies for patient stratification using machine learning analysis of omics data: a scoping review
    Glaab, Enrico
    Rauschenberger, Armin
    Banzi, Rita
    Gerardi, Chiara
    Garcia, Paula
    Demotes, Jacques
    BMJ OPEN, 2021, 11 (12):
  • [40] A tutorial in displaying mass spectrometry-based proteomic data using heat maps
    Melissa Key
    BMC Bioinformatics, 13