Biomarker discovery for arsenic exposure using functional data. Analysis and feature learning of mass spectrometry proteomic data

被引:29
|
作者
Harezlak, Jaroslaw [1 ]
Wu, Michael C. [2 ]
Wang, Mike [3 ]
Schwartzman, Armin [2 ,4 ]
Christiani, David C. [3 ]
Lin, Xihong [2 ]
机构
[1] Indiana Univ, Sch Med, Dept Med, Indianapolis, IN 46202 USA
[2] Harvard Univ, Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
[3] Harvard Univ, Sch Publ Hlth, Dept Environm Hlth, Boston, MA 02115 USA
[4] Dana Farber Canc Inst, Dept Biostat & Computat Biol, Boston, MA 02115 USA
关键词
D O I
10.1021/pr070491n
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Plasma biomarkers of exposure to environmental contaminants play an important role in early detection of disease. The emerging field of proteomics presents an attractive opportunity for candidate biomarker discovery, as it simultaneously measures and analyzes a large number of proteins. This article presents a case study for measuring arsenic concentrations in a population residing in an As-endemic region of Bangladesh using plasma protein expressions measured by SELDI-TOF mass spectrometry. We analyze the data using a unified statistical method based on functional learning to preprocess mass spectra and extract mass spectrometry (MS) features and to associate the selected MS features with arsenic exposure measurements. The task is challenging due to several factors, the high dimensionality of mass spectrometry data, complicated error structures, and a multiple comparison problem. We use nonparametric functional regression techniques for MS modeling, peak detection based on the significant zero-downcrossing method, and peak alignment using a warping algorithm. Our results show significant associations of arsenic exposure to either under- or overexpressions of 20 proteins.
引用
收藏
页码:217 / 224
页数:8
相关论文
共 50 条
  • [1] Analysis of mass spectrometry data for serum biomarker discovery
    Ressom, Habtom W.
    Varghese, Rency S.
    Goldman, Lenka
    Loffredo, Christopher A.
    Abdel-Hamid, Mohamed
    Kyselova, Zuzana
    Mechref, Yehia
    Novotny, Milos
    Goldman, Radoslav
    [J]. 2007 IEEE/NIH LIFE SCIENCE SYSTEMS AND APPLICATIONS WORKSHOP, 2007, : 172 - +
  • [2] Improving feature ranking for biomarker discovery in proteomics mass spectrometry data using genetic programming
    Ahmed, Soha
    Zhang, Mengjie
    Peng, Lifeng
    [J]. CONNECTION SCIENCE, 2014, 26 (03) : 215 - 243
  • [3] From biomarker discovery to proteomic validation using mass spectrometry
    Jylha, A.
    [J]. ACTA OPHTHALMOLOGICA, 2018, 96 : 59 - 59
  • [4] Biomarker Signature Discovery from Mass Spectrometry Data
    Kong, Ao
    Gupta, Chinmaya
    Ferrari, Mauro
    Agostini, Marco
    Bedin, Chiara
    Bouamrani, Ali
    Tasciotti, Ennio
    Azencott, Robert
    [J]. IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2014, 11 (04) : 766 - 772
  • [5] Bioinformatic Analysis of Data Generated from MALDI Mass Spectrometry for Biomarker Discovery
    He, Zengyou
    Qi, Robert Z.
    Yu, Weichuan
    [J]. APPLICATIONS OF MALDI-TOF SPECTROSCOPY, 2013, 331 : 193 - 209
  • [6] Incorporating clinical information in proteomic data analysis for biomarker discovery
    Zhang, Z.
    White, C.
    Chan, D.
    [J]. MOLECULAR & CELLULAR PROTEOMICS, 2005, 4 (08) : S169 - S169
  • [7] Integrative Analysis of Proteomic, Glycomic, and Metabolomic Data for Biomarker Discovery
    Wang, Minkun
    Yu, Guoqiang
    Ressom, Habtom W.
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2016, 20 (05) : 1225 - 1231
  • [8] ABC Algorithm as Feature Selection for Biomarker Discovery in Mass Spectrometry Analysis
    SyarifahAdilah, M. Y.
    Abdullah, Rosni
    Venkat, Ibrahim
    [J]. 2012 4TH CONFERENCE ON DATA MINING AND OPTIMIZATION (DMO), 2012, : 67 - 72
  • [9] Bayesian analysis of mass spectrometry proteomic data using wavelet-based functional mixed models
    Morris, Jeffrey S.
    Brown, Philip J.
    Herrick, Richard C.
    Baggerly, Keith A.
    Coombes, Kevin R.
    [J]. BIOMETRICS, 2008, 64 (02) : 479 - 489
  • [10] Automated Morphological and Morphometric Analysis of Mass Spectrometry Imaging Data: Application to Biomarker Discovery
    de Muller, Gael Picard
    Ait-Belkacem, Rima
    Bonnel, David
    Longuespee, Remi
    Stauber, Jonathan
    [J]. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2017, 28 (12) : 2635 - 2645