Strategies for phase change material application in latent heat thermal energy storage enhancement: Status and prospect

被引:87
|
作者
Ghosh, Debasree [1 ]
Ghose, Joyjeet [2 ]
Datta, Pulak [1 ]
Kumari, Pallavi [1 ]
Paul, Suraj [1 ]
机构
[1] Birla Inst Technol, Dept Chem Engn, Ranchi, India
[2] Birla Inst Technol, Dept Prod & Ind Engn, Ranchi, India
关键词
Latent heat energy storage; Heat transfer enhancement; PCM; PCM composite; Renewable energy; CHANGE MATERIAL PCM; LITHIUM-ION BATTERY; PERFORMANCE ENHANCEMENT; HOUSEHOLD REFRIGERATOR; ENCAPSULATED PCM; COMPOSITE PCM; NUMERICAL-ANALYSIS; POLYMER SHELL; N-OCTADECANE; PARAFFIN WAX;
D O I
10.1016/j.est.2022.105179
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The use of phase change materials (PCMs) has enormous potential to store thermal energy from a low- temperature heat source as well as from waste heat as latent heat. The amount of latent heat in PCM is much higher than sensible heat. Therefore, this significant latent heat supply can partially fulfil the energy demand for certain applications. PCMs can supply energy during the power crisis. PCMs are also helping to meet the basic need of life during natural calamities. The enhancement of the thermal properties of PCM can improve the use of PCM as a sustainable resource. In this study, the different processes of thermal property enhancement according to the application are reported and presented in a compiled form. The study reflects that using additives and encapsulation, a change in thermal conductivity, phase change temperature, and latent heat of solid-liquid phase change can be achieved. The changes in size and shape of the PCM container cavity are also reported. There is an improvement in thermal energy storage capacity with an increase in the heat transfer area of the cavity. The review reveals that the encapsulated PCM and PCM composite can give a better performance in latent heat thermal energy storage compared to complicated shaped energy storage devices. Therefore, this complied study will help to select the PCM or PCM composite and in design of LHTES for a specific application
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Micro Encapsulated Phase Change Material for the Application in Thermal Energy Storage
    Sulzgruber, Verena
    Unterlass, Miriam
    Cavalli, Tobia
    Walter, Heimo
    JOURNAL OF ENERGY RESOURCES TECHNOLOGY-TRANSACTIONS OF THE ASME, 2022, 144 (05):
  • [42] Experimental study on enhancement of thermal energy storage with phase-change material
    Yang, Jialin
    Yang, Lijun
    Xu, Chao
    Du, Xiaoze
    APPLIED ENERGY, 2016, 169 : 164 - 176
  • [43] A numerical investigation of the effect of fin inclination angle on the thermal energy storage performance of a phase change material in a rectangular latent heat thermal energy storage unit
    Pandey, Sudhanshu
    Kim, Se Hyun
    Park, Seong Hyun
    Ha, Man Yeong
    JOURNAL OF ENERGY STORAGE, 2022, 47
  • [44] Heat transfer enhancement in latent thermal energy storage unit
    Raza, Waseem
    Berto, Arianna
    Zanetti, Emanuele
    Azzolin, Marco
    Del Col, Davide
    14TH IIR CONFERENCE ON PHASE CHANGE MATERIALS AND SLURRIES FOR REFRIGERATION AND AIR CONDITIONING, 2024, : 222 - 229
  • [45] Latent thermal energy storage system using phase change material in corrugated enclosures
    Languri, Ehsan Mohseni
    Aigbotsua, Clifford O.
    Alvarado, Jorge L.
    APPLIED THERMAL ENGINEERING, 2013, 50 (01) : 1008 - 1014
  • [46] A Numerical Study of Latent Thermal Energy Storage in a Phase Change Material/Carbon Panel
    Mekaddem, Najoua
    Ben Ali, Samia
    Mazioud, Atef
    Hannachi, Ahmed
    TECHNOLOGIES AND MATERIALS FOR RENEWABLE ENERGY, ENVIRONMENT AND SUSTAINABILITY (TMREES), 2016, 1758
  • [47] Phase Change Characteristics of a Nanoemulsion as a Latent Heat Storage Material
    Koji Fumoto
    Noriaki Sato
    Masahiro Kawaji
    Tsuyoshi Kawanami
    Takao Inamura
    International Journal of Thermophysics, 2014, 35 : 1922 - 1932
  • [48] Phase Change Characteristics of a Nanoemulsion as a Latent Heat Storage Material
    Fumoto, Koji
    Sato, Noriaki
    Kawaji, Masahiro
    Kawanami, Tsuyoshi
    Inamura, Takao
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2014, 35 (9-10) : 1922 - 1932
  • [49] High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques
    Cardenas, Bruno
    Leon, Noel
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2013, 27 : 724 - 737
  • [50] Enhancement of Heat Transfer in PEG 1000 Using Nano-Phase Change Material for Thermal Energy Storage
    Mohammed Anees Sheik
    M. K. Aravindan
    N. Beemkumar
    Prem Kumar Chaurasiya
    Joshuva Arockia Dhanraj
    Arabian Journal for Science and Engineering, 2022, 47 : 15899 - 15913