Strategies for phase change material application in latent heat thermal energy storage enhancement: Status and prospect

被引:87
|
作者
Ghosh, Debasree [1 ]
Ghose, Joyjeet [2 ]
Datta, Pulak [1 ]
Kumari, Pallavi [1 ]
Paul, Suraj [1 ]
机构
[1] Birla Inst Technol, Dept Chem Engn, Ranchi, India
[2] Birla Inst Technol, Dept Prod & Ind Engn, Ranchi, India
关键词
Latent heat energy storage; Heat transfer enhancement; PCM; PCM composite; Renewable energy; CHANGE MATERIAL PCM; LITHIUM-ION BATTERY; PERFORMANCE ENHANCEMENT; HOUSEHOLD REFRIGERATOR; ENCAPSULATED PCM; COMPOSITE PCM; NUMERICAL-ANALYSIS; POLYMER SHELL; N-OCTADECANE; PARAFFIN WAX;
D O I
10.1016/j.est.2022.105179
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The use of phase change materials (PCMs) has enormous potential to store thermal energy from a low- temperature heat source as well as from waste heat as latent heat. The amount of latent heat in PCM is much higher than sensible heat. Therefore, this significant latent heat supply can partially fulfil the energy demand for certain applications. PCMs can supply energy during the power crisis. PCMs are also helping to meet the basic need of life during natural calamities. The enhancement of the thermal properties of PCM can improve the use of PCM as a sustainable resource. In this study, the different processes of thermal property enhancement according to the application are reported and presented in a compiled form. The study reflects that using additives and encapsulation, a change in thermal conductivity, phase change temperature, and latent heat of solid-liquid phase change can be achieved. The changes in size and shape of the PCM container cavity are also reported. There is an improvement in thermal energy storage capacity with an increase in the heat transfer area of the cavity. The review reveals that the encapsulated PCM and PCM composite can give a better performance in latent heat thermal energy storage compared to complicated shaped energy storage devices. Therefore, this complied study will help to select the PCM or PCM composite and in design of LHTES for a specific application
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Heat transfer enhancement of microencapsulated phase change material by addition of nanoparticles for a latent heat thermal energy storage system
    Sami, Samaneh
    Etesami, Nasrin
    ENERGY REPORTS, 2021, 7 : 4930 - 4940
  • [2] Numerical investigation on latent heat thermal energy storage in a phase change material using a heat exchanger
    Ghosh, Debasree
    Kumar, Prasoon
    Sharma, Siddha
    Guha, Chandan
    Ghose, Joyjeet
    HEAT TRANSFER, 2021, 50 (05) : 4289 - 4308
  • [3] Synthesis and thermal properties of nanoencapsulation of paraffin as phase change material for latent heat thermal energy storage
    Zhang N.
    Yuan Y.
    Energy and Built Environment, 2020, 1 (04): : 410 - 416
  • [4] Development and characterization of composite phase change material: Thermal conductivity and latent heat thermal energy storage
    Trigui, Abdelwaheb
    Karkri, Mustapha
    Boudaya, Chokri
    Candau, Yves
    Ibos, Laurent
    COMPOSITES PART B-ENGINEERING, 2013, 49 : 22 - 35
  • [5] Corrosion assessment of erythritol as a phase change material in latent heat thermal energy storage system
    Patel, Chhabishwar Prasad
    Nikam, Swapnil
    Mondal, Som
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2023, 148 (02) : 371 - 381
  • [6] Corrosion assessment of erythritol as a phase change material in latent heat thermal energy storage system
    Chhabishwar Prasad Patel
    Swapnil Nikam
    Som Mondal
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 371 - 381
  • [7] Comprehensive review of phase change material based latent heat thermal energy storage system
    Gadhave, Pitambar
    Pathan, Firojkhan
    Kore, Sandeep
    Prabhune, Chandrakant
    INTERNATIONAL JOURNAL OF AMBIENT ENERGY, 2021, 43 (01) : 4181 - 4206
  • [8] Simulation and testing of a latent heat thermal energy storage unit with metallic phase change material
    Kotze, J. P.
    von Backstroem, T. W.
    Erens, P. J.
    PROCEEDINGS OF THE SOLARPACES 2013 INTERNATIONAL CONFERENCE, 2014, 49 : 860 - 869
  • [9] Performance enhancement of latent heat thermal energy storage system by using spiral fins in phase change material solidification process
    Miao, Xiaomang
    Riaz, Fahid
    Alotaibi, Badr
    Agrawal, Manoj Kumar
    Abuhussain, Mohammed
    Alsenani, Theyab R.
    Balderlou, Mansoureh Alizadeh
    Lin, Qing
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2023, 176 : 568 - 579
  • [10] A review of fin application for latent heat thermal energy storage enhancement
    Low, Zheng Hua
    Qin, Zhen
    Duan, Fei
    JOURNAL OF ENERGY STORAGE, 2024, 85