Numerical analysis of a new volterra integro-differential equation involving fractal-fractional operators

被引:35
|
作者
Igret Araz, Seda [1 ]
机构
[1] Siirt Univ, Fac Educ, Dept Math, Siirt, Turkey
关键词
Fractal-fractional derivative; Fractal-fractional integral; Fractional integro-differential equation; New numerical scheme;
D O I
10.1016/j.chaos.2019.109396
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we suggest a new integro-differential equation by utilizing from the concept of fractal-fractional derivative and integral newly introduced by Atangana. We offer that under which conditions the solution of the suggested equation is exist and unique benefitting from Banach fixed-point theorem. Also, we construct a new numerical scheme for the numerical solution of our problem and we give numerical simulation and illustrations for different values of fractional order alpha and fractal order beta. That's why, this study will guide for researchers significantly in theory and applications. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Numerical Solution of Fractional Volterra-Fredholm Integro-Differential Equation Using Lagrange Polynomials
    Salman, Nour K.
    Mustafa, Muna M.
    BAGHDAD SCIENCE JOURNAL, 2020, 17 (04) : 1234 - 1240
  • [32] Analysis of Cauchy problem with fractal-fractional differential operators
    Alharthi, Nadiyah Hussain
    Atangana, Abdon
    Alkahtani, Badr S.
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [33] Analysis of Volterra Integrodifferential Equations with the Fractal-Fractional Differential Operator
    Kamran, Kamal
    Subhan, Aisha
    Shah, Kamal
    Aiadi, Suhad Subhi
    Mlaiki, Nabil
    Alotaibi, Fahad M.
    COMPLEXITY, 2023, 2023
  • [34] Stability of the fractional Volterra integro-differential equation by means of ψ-Hilfer operator
    Sousa, Jose Vanterler da C.
    Rodrigues, Fabio G.
    de Oliveira, Edmundo Capelas
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (09) : 3033 - 3043
  • [35] ON LOCAL FRACTIONAL VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS IN FRACTAL STEADY HEAT TRANSFER
    Yang, Ai-Min
    Han, Yang
    Mang, Yu-Zhu
    Wang, Li-Ting
    Zhang, Di
    Yang, Xiao-Jun
    THERMAL SCIENCE, 2016, 20 : S789 - S793
  • [36] An effective computational solver for fractal-fractional 2D integro-differential equations
    Rahimkhani, P.
    Sedaghat, S.
    Ordokhani, Y.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (04) : 3411 - 3440
  • [37] A Numerical Scheme for Solving Nonlinear Fractional Volterra Integro-Differential Equations
    Rahimkhani, Parisa
    Ordokhani, Yadollah
    Babolian, Esmail
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2018, 13 (02): : 111 - 132
  • [38] Numerical Analysis of the Fractional-Order Nonlinear System of Volterra Integro-Differential Equations
    Sunthrayuth, Pongsakorn
    Ullah, Roman
    Khan, Adnan
    Shah, Rasool
    Kafle, Jeevan
    Mahariq, Ibrahim
    Jarad, Fahd
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [39] New numerical approximation for Chua attractor with fractional and fractal-fractional operators
    Atangana, Abdon
    Araz, Seda Igret
    ALEXANDRIA ENGINEERING JOURNAL, 2020, 59 (05) : 3275 - 3296
  • [40] Numerical approximation and simulation of a Volterra integro-differential equation with a peridynamic differential operator
    Zhu, Yan
    Dong, Tiantian
    Zheng, Xiangcheng
    Li, Yiqun
    Jia, Sihao
    Guo, Xu
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2025, 105 (03):