Grand quasi Lebesgue spaces

被引:6
|
作者
Formica, Maria Rosaria [1 ]
Ostrovsky, Eugeny [2 ]
Sirota, Leonid [2 ]
机构
[1] Univ Napoli Parthenope, Via Gen Parisi 13, I-80132 Naples, Italy
[2] Bar Ilan Univ, Dept Math & Stat, IL-52900 Ramat Can, Israel
关键词
Lebesgue-Riesz spaces; Quasi-Banach spaces; Grand quasi Lebesgue Spaces; Tail function; Contraction principle; Hardy operators; INEQUALITY;
D O I
10.1016/j.jmaa.2021.125369
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of quasi-Banach spaces as an extension of the classical Grand Lebesgue Spaces for "small" values of the parameter, and we investigate some its properties, in particular, completeness, fundamental function, operators estimates, Boyd indices, contraction principle, tail behavior, dual space, generalized triangle and quadrilateral constants and inequalities. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Embeddings between grand, small, and variable Lebesgue spaces
    D. Cruz-Uribe
    A. Fiorenza
    O. M. Guzmán
    Mathematical Notes, 2017, 102 : 677 - 686
  • [42] Boyd Indices in Generalized Grand Lebesgue Spaces and Applications
    Maria Rosaria Formica
    Raffaella Giova
    Mediterranean Journal of Mathematics, 2015, 12 : 987 - 995
  • [43] Weighted Hardy Operators in Grand Lebesgue Spaces on ℝn
    Samko S.G.
    Umarkhadzhiev S.M.
    Journal of Mathematical Sciences, 2022, 268 (4) : 509 - 522
  • [44] RIESZ FRACTIONAL INTEGRALS IN GRAND LEBESGUE SPACES ON Rn
    Samko, Stefan
    Umarkhadzhiev, Salaudin
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (03) : 608 - 624
  • [45] Sawyer's duality principle for grand Lebesgue spaces
    Jain, Pankaj
    Singh, Arun Pal
    Singh, Monika
    Stepanov, Vladimir D.
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (04) : 841 - 849
  • [46] Embeddings between grand, small, and variable Lebesgue spaces
    Cruz-Uribe, D.
    Fiorenza, A.
    Guzman, O. M.
    MATHEMATICAL NOTES, 2017, 102 (5-6) : 677 - 686
  • [47] Multilinear integral operators in weighted grand Lebesgue spaces
    Vakhtang Kokilashvili
    Mieczysław Mastyło
    Alexander Meskhi
    Fractional Calculus and Applied Analysis, 2016, 19 : 696 - 724
  • [48] Integral operators with homogeneous kernels in grand Lebesgue spaces
    Umarkhadzhiev, S. M.
    MATHEMATICAL NOTES, 2017, 102 (5-6) : 710 - 721
  • [49] A direct approach to the duality of grand and small Lebesgue spaces
    Di Fratta, Giovanni
    Fiorenza, Alberto
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 70 (07) : 2582 - 2592
  • [50] Complex Interpolation of Modified Weighted Grand Lebesgue Spaces
    Amalina, Dina Nur
    Hakiki, Moch Taufik
    Hakim, Denny Ivanal
    Ifronika
    Sawano, Yoshihiro
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2022, 19 (06)