Bifurcation and travelling wave solutions for a (2+1)-dimensional KdV equation

被引:31
|
作者
Elmandouha, A. A. [1 ,2 ]
Ibrahim, A. G. [1 ]
机构
[1] King Faisal Univ, Coll Sci, Dept Math & Stat, POB 400, Al Ahsaa 31982, Saudi Arabia
[2] Mansoura Univ, Fac Sci, Dept Math, Mansoura, Egypt
来源
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE | 2020年 / 14卷 / 01期
关键词
Travel wave solution; bifurcation; phase portrait; (2 + 1)KdV equation; TRANSFORMATION; INTEGRABILITY; DYNAMICS; SOLITON; MODEL;
D O I
10.1080/16583655.2019.1709271
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work aims to study a new equation that is recently introduced in (Phys. Lett. A. 383: 728-731, 2019). By using the method of dynamical systems, we examine the bifurcation and construct exact travelling wave solutions for a (2+1) KdV equation. Exact parametric representations of all wave solutions are introduced and they are clari?ed graphically.
引用
收藏
页码:139 / 147
页数:9
相关论文
共 50 条
  • [11] Breather Wave and Traveling Wave Solutions for A (2+1)-Dimensional KdV4 Equation
    Tao, Sixing
    ADVANCES IN MATHEMATICAL PHYSICS, 2022, 2022
  • [12] Deformation rogue wave to the (2+1)-dimensional KdV equation
    Xiaoen Zhang
    Yong Chen
    Nonlinear Dynamics, 2017, 90 : 755 - 763
  • [13] Deformation rogue wave to the (2+1)-dimensional KdV equation
    Zhang, Xiaoen
    Chen, Yong
    NONLINEAR DYNAMICS, 2017, 90 (02) : 755 - 763
  • [14] Travelling wave solutions for the (2+1) dimensional Nizhnik-Novikov-Veselov equation
    Tang, Jiashi
    Han, Feng
    Zhao, Minghua
    Fu, Wenbin
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (22) : 11083 - 11088
  • [15] Bifurcations of travelling wave solutions for (2+1)-dimensional Boussinesq-type equation
    Feng, Dahe
    He, Tianlan
    Lu, Junliang
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 185 (01) : 402 - 414
  • [16] Explicit and exact travelling plane wave solutions of the (2+1)-dimensional Boussinesq equation
    Huang, WH
    Jin, MZ
    CHINESE PHYSICS, 2003, 12 (04): : 361 - 364
  • [17] A note on bifurcations and travelling wave solutions of a (2+1)-dimensional nonlinear Schrodinger equation
    Wang, Heng
    Zheng, Shuhua
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (01) : 251 - 261
  • [18] Generalized dromion solutions of the (2+1)-dimensional KdV equation
    Lou, SY
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (24): : 7227 - 7232
  • [19] Travelling wave solutions for a CBS equation in 2+1 dimensions
    Luz Gandarias, Maria
    Santos Bruzon, Maria
    RECENT ADVANCES ON APPLIED MATHEMATICS: PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '08), 2008, : 153 - +
  • [20] Lump soliton wave solutions for the (2+1)-dimensional Konopelchenko-Dubrovsky equation and KdV equation
    Khater, Mostafa M. A.
    Lu, Dianchen
    Attia, Raghda A. M.
    MODERN PHYSICS LETTERS B, 2019, 33 (18):