A fractional-order accumulative regularization filter for force reconstruction

被引:25
|
作者
Jiang Wensong [1 ]
Wang Zhongyu [1 ]
Lv Jing [2 ]
机构
[1] Beihang Univ, Sch Instrumentat Sci & Optoelect Engn, Beijing 100191, Peoples R China
[2] China Natl Accreditat Serv Conform Assessment, Beijing 100062, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Force; Reconstruction; Iterative Tikhonov regularization; Fractional order accumulation; Ill-posed inverse problem; CONSISTENT SPATIAL EXPRESSION; DISTRIBUTED DYNAMIC LOADS; GREY SYSTEM MODEL; INVERSE PROBLEM; ELASTIC IMPACT; KALMAN FILTER; IDENTIFICATION; CALIBRATION; SELECTION; DECONVOLUTION;
D O I
10.1016/j.ymssp.2017.09.001
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The ill-posed inverse problem of the force reconstruction comes from the influence of noise to measured responses and results in an inaccurate or non-unique solution. To overcome this ill-posedness, in this paper, the transfer function of the reconstruction model is redefined by a Fractional order Accumulative Regularization Filter (FARF). First, the measured responses with noise are refined by a fractional-order accumulation filter based on a dynamic data refresh strategy. Second, a transfer function, generated by the filtering results of the measured responses, is manipulated by an iterative Tikhonov regularization with a serious of iterative Landweber filter factors. Third, the regularization parameter is optimized by the Generalized Cross-Validation (GCV) to improve the ill-posedness of the force reconstruction model. A Dynamic Force Measurement System (DFMS) for the force reconstruction is designed to illustrate the application advantages of our suggested FARF method. The experimental result shows that the FARF method with r = 0.1 and alpha = 20, has a PRE of 0.36% and an RE of 2.45%, is superior to other cases of the FARF method and the traditional regularization methods when it comes to the dynamic force reconstruction. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:405 / 423
页数:19
相关论文
共 50 条
  • [31] Multifunctional Electronically Reconfigurable and Tunable Fractional-Order Filter
    Dvorak, Jan
    Jerabek, Jan
    Polesakova, Zuzana
    Kubanek, David
    Blazek, Petr
    ELEKTRONIKA IR ELEKTROTECHNIKA, 2019, 25 (01) : 26 - 30
  • [32] Universal Voltage Conveyors in Fractional-Order Filter Design
    Koton, Jaroslav
    Kubanek, David
    Vrba, Kamil
    Shadrin, Aleksandr
    Ushakov, Peter
    2016 39TH INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND SIGNAL PROCESSING (TSP), 2016, : 593 - 598
  • [33] On the radiation force fields of fractional-order acoustic vortices
    Hong, Z. Y.
    Zhang, J.
    Drinkwater, B. W.
    EPL, 2015, 110 (01)
  • [34] Total fractional-order variation regularization based image reconstruction method for capacitively coupled electrical resistance tomography
    Shi, Yanyan
    Liao, Juanjuan
    Wang, Meng
    Li, Yating
    Fu, Feng
    Soleimani, Manuchehr
    FLOW MEASUREMENT AND INSTRUMENTATION, 2021, 82
  • [35] Adaptive Weighted High Frequency Iterative Algorithm for Fractional-Order Total Variation with Nonlocal Regularization for Image Reconstruction
    Chen, Hui
    Qin, Yali
    Ren, Hongliang
    Chang, Liping
    Hu, Yingtian
    Zheng, Huan
    ELECTRONICS, 2020, 9 (07) : 1 - 15
  • [36] Image Restoration with Fractional-Order Total Variation Regularization and Group Sparsity
    Bhutto, Jameel Ahmed
    Khan, Asad
    Rahman, Ziaur
    MATHEMATICS, 2023, 11 (15)
  • [37] Directional fractional-order total variation hybrid regularization for image deblurring
    Liu, Qiaohong
    Gao, Song
    JOURNAL OF ELECTRONIC IMAGING, 2020, 29 (03)
  • [38] Statistical iterative reconstruction using adaptive fractional order regularization
    Zhang, Yi
    Wang, Yan
    Zhang, Weihua
    Lin, Feng
    Pu, Yifei
    Zhou, Jiliu
    BIOMEDICAL OPTICS EXPRESS, 2016, 7 (03): : 1015 - 1029
  • [39] Comparison of unit-step responses of parametric filter and fractional-order filter
    Jakubowska-Ciszek, Agnieszka
    Piwowar, Anna
    COMPUTER APPLICATIONS IN ELECTRICAL ENGINEERING (ZKWE'2019), 2019, 28
  • [40] Power-Efficient Electronically Tunable Fractional-Order Filter
    Tasneem, Sadaf
    Ranjan, Rajeev Kumar
    Paul, Sajal K.
    Herencsar, Norbert
    FRACTAL AND FRACTIONAL, 2024, 8 (01)