Deep Transfer Learning for 5G Massive MIMO Downlink CSI Feedback

被引:6
|
作者
Zeng, Jun [1 ]
He, Zhengran [1 ]
Sun, Jinlong [1 ]
Adebisi, Bamidele [2 ]
Gacanin, Haris [3 ]
Gui, Guan [1 ]
Adachi, Fumiyuki [4 ]
机构
[1] NJUPT, Coll Telecommun & Informat Engn, Nanjing, Peoples R China
[2] Manchester Metropolitan Univ, Fac Sci & Engn, Dept Engn, Manchester, Lancs, England
[3] Rhein Westfal TH Aachen, Fac Elect Engn & Informat Technol, Aachen, Germany
[4] Tohoku Univ, Res Org Elect Commun, Sendai, Miyagi, Japan
关键词
Deep transfer learning (DTL); downlink CSI; limited feedback; FDD; 5G massive MIMO; CHANNEL ESTIMATION; PREDICTION; DELAY;
D O I
10.1109/WCNC49053.2021.9417349
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Acquisition of downlink channel state information (CSI) is an important procedure performed at the base station (B-S) for high quality wireless communication in frequency division duplexing (FDD) communication system. Generally, the downlink CSI is fed back to the BS through the user equipment (UE). Compared with traditional methods, neural network (NN) can effectively compress the downlink CSI, thus greatly reducing the feedback overhead. However, the generalization of the NN is poor, hence it is necessary to train a NN from scratch whenever there is a change in the wireless channel environment. Nevertheless, training a NN this way requires huge data and time cost in 5G massive MIMO systems. In this paper, deep transfer learning (DTL) is proposed to solve the problem of high training cost of the downlink CSI feedback NN. In a new wireless environment, our proposed technique utilises relatively small number of samples to fine-tune a pre-trained model, in order to obtain a new model with low training cost. The performance of this model is shown to be comparable with that of the NN trained with large samples. Experiment results demonstrate the effectiveness and superiority of the proposed method.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Downlink Performance of Uplink Fractional Power Control in 5G Massive MIMO Systems
    Baracca, Paolo
    Giordano, Lorenzo Galati
    Garcia-Rodriguez, Adrian
    Geraci, Giovanni
    Lopez-Perez, David
    2018 IEEE GLOBECOM WORKSHOPS (GC WKSHPS), 2018,
  • [42] Unlocking Massive MIMO Downlink Capacity in City-Wide 5G Deployments
    Zhang, Siming
    Doufexi, Angela
    Nix, Andrew
    2017 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2017,
  • [43] Robust Frequency Selective Precoding for Downlink Massive MIMO in 5G Broadband System
    Xu, Qian
    Sun, Jianyong
    Xu, Zongben
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (12) : 15941 - 15952
  • [44] Deep Learning for Efficient CSI Feedback in Massive MIMO: Adapting to New Environments and Small Datasets
    Liu, Zhenyu
    Wang, Li
    Xu, Lianming
    Ding, Zhi
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (09) : 12297 - 12312
  • [45] Deep Learning-Based Denoise Network for CSI Feedback in FDD Massive MIMO Systems
    Ye, Hongyuan
    Gao, Feifei
    Qian, Jing
    Wang, Hao
    Li, Geoffrey Ye
    IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1742 - 1746
  • [46] Deep Learning and Compressive Sensing-Based CSI Feedback in FDD Massive MIMO Systems
    Liang, Peizhe
    Fan, Jiancun
    Shen, Wenhan
    Qin, Zhijin
    Li, Geoffrey Ye
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (08) : 9217 - 9222
  • [47] Compressive Sampled CSI Feedback Method Based on Deep Learning for FDD Massive MIMO Systems
    Wang, Jie
    Gui, Guan
    Ohtsuki, Tomoaki
    Adebisi, Bamidele
    Gacanin, Haris
    Sari, Hikmet
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2021, 69 (09) : 5873 - 5885
  • [48] Massive MIMO toward 5G
    Choudhury, P. K.
    Abou El-Nasr, M.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2020, 34 (09) : 1091 - 1094
  • [49] 5G MASSIVE MIMO技术
    伍株仪
    电子技术与软件工程, 2019, (08) : 49 - 50
  • [50] Deep Learning-Based CSI Feedback for Terahertz Ultra-Massive MIMO Systems
    Li, Yuling
    Guo, Aihuang
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2024, E107A (08) : 1413 - 1416