Gene expression changes in leaves of Citrus sinensis (L.) Osbeck infected by Citrus tristeza virus

被引:14
|
作者
Cheng, Chunzhen [1 ,2 ]
Zhang, Yongyan [2 ]
Zhong, Yun [3 ]
Yang, Jiawei [4 ]
Yan, Shutang [5 ]
机构
[1] Fujian Agr & Forestry Univ, Inst Hort Biotechnol, Fuzhou, Peoples R China
[2] Fujian Agr & Forestry Univ, Coll Hort, Fuzhou 350002, Peoples R China
[3] Guangdong Acad Agr Sci, Inst Fruit Tree Res, Guangzhou, Guangdong, Peoples R China
[4] Agr Bur Rongxian, Econ Crop Stn, Zigong, Peoples R China
[5] Southwest Univ, Inst Citrus Res, Chongqing, Peoples R China
来源
基金
对外科技合作项目(国际科技项目); 中国国家自然科学基金;
关键词
Citrus tristeza virus (CTV); differentially expressed genes (DEGs); microarray; plant-pathogen interaction; ACID-DERIVED SIGNALS; TRANSCRIPTIONAL RESPONSE; PONCIRUS-TRIFOLIATA; ABIOTIC STRESS; SALICYLIC-ACID; CELL-DEATH; PLANT; ARABIDOPSIS; BIOSYNTHESIS; AURANTIFOLIA;
D O I
10.1080/14620316.2016.1173523
中图分类号
S6 [园艺];
学科分类号
0902 ;
摘要
Transcriptional changes between Citrus tristeza virus (CTV) inoculated- and mock inoculated-sweet orange 'Jincheng' (Citrus sinensis Osbeck cv. 'Jincheng') leaves were compared using microarrays. A total of 2400 differentially expressed genes (DEGs, fold change >= 2), 1557 (64.85%) up-regulated and 843 (35.15%) down-regulated, were obtained. Data mining revealed that CTV infection enhanced the transcription of genes involved in cell wall metabolism, plant defense, and material transport while it decreased the expression of protein synthesis and cytokinin metabolism-related genes. CTV infection strongly affected pathways involved in light reaction, starch and sucrose metabolism, lipid metabolism, and hormone metabolism. Secondary metabolism pathways including terpenoids, phenylpropanoids, flavonoids and alkaloid metabolism were also greatly influenced. Notably, several gibberellin (GA)-regulated genes were significantly induced by CTV. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied to confirm the expression changes of 13 DEGs detected by microarray analysis. Our data described the early molecular changes of sweet orange in response to CTV infection and should provide informative suggestions for transgene selection of citrus genetic breeding.
引用
收藏
页码:466 / 475
页数:10
相关论文
共 50 条
  • [31] Effects of Two Citrus Tristeza Virus Isolates on Sweet Orange (Citrus sinensis) Propagated on a Citrus Tristeza Virus Tolerant Rootstock: A Metabolomics and Transcriptomics Approach
    McNeil, Christopher J.
    Araujo, Karla
    Godfrey, Kristine
    Slupsky, Carolyn M.
    ACS AGRICULTURAL SCIENCE & TECHNOLOGY, 2021, 1 (04): : 407 - 416
  • [32] Reaction of transgenic Citrus sinensis plants to Citrus tristeza virus infection by Toxoptera citricida
    Muniz, Fabiana R.
    Souza, Amancio
    Harakava, Ricardo
    Alves Mourao Filho, Francisco de Assis
    Stach-Machado, Dagmar R.
    Rezende, Jorge A. M.
    Febres, Vicente J.
    Moore, Gloria A.
    Mendes, Beatriz M. J.
    EUROPEAN JOURNAL OF PLANT PATHOLOGY, 2014, 139 (01) : 151 - 159
  • [33] Cytological heterozygosity and the hybrid origin of sweet orange [Citrus sinensis (L.) Osbeck]
    A. Pedrosa
    D. Schweizer
    M. Guerra
    Theoretical and Applied Genetics, 2000, 100 : 361 - 367
  • [34] Terpenoid emission from Citrus sinensis (L.) OSBECK under drought stress
    Hansen, U
    Seufert, G
    PHYSICS AND CHEMISTRY OF THE EARTH PART B-HYDROLOGY OCEANS AND ATMOSPHERE, 1999, 24 (06): : 681 - 687
  • [35] Distribution of flavanones and flavones in fruits of citrus sinensis (L.) Osbeck, cv Sanguinelli
    Martinez-Nicolas, J.
    Conesa, A.
    Porras, I.
    Ortuno, A.
    Del Rio, J. A.
    VII CONGRESO IBERICO DE AGROINGENIERIA Y CIENCIAS HORTICOLAS: INNOVAR Y PRODUCIR PARA EL FUTURO. INNOVATING AND PRODUCING FOR THE FUTURE, 2014, : 1128 - 1133
  • [36] Correction to: Somatic embryogenesis of a seedless sweet orange (Citrus sinensis (L.) Osbeck)
    Jean C. Cardoso
    Maisa Curtolo
    Rodrigo R. Latado
    Adriana P. Martinelli
    In Vitro Cellular & Developmental Biology - Plant, 2018, 54 : 131 - 132
  • [37] Terpenoid emission from citrus sinensis (L.) OSBECK under drought stress
    Hansen, U.
    Seufert, G.
    Physics and Chemistry of the Earth Part B:Hydrology, Oceans and Atmosphere, 24 (06): : 681 - 687
  • [38] Functional investigation and applications of the acetylesterase activity of the Citrus sinensis (L.) Osbeck peel
    Fontana, Gianfranco
    Bruno, Maurizio
    Maggio, Antonella
    Rosselli, Sergio
    NATURAL PRODUCT RESEARCH, 2021, 35 (22) : 4502 - 4507
  • [39] Cytological heterozygosity and the hybrid origin of sweet orange [Citrus sinensis (L.) Osbeck]
    Pedrosa, A
    Schweizer, D
    Guerra, M
    THEORETICAL AND APPLIED GENETICS, 2000, 100 (3-4) : 361 - 367
  • [40] Involvement of polyamines in creasing of sweet orange [Citrus sinensis (L.) Osbeck] fruit
    Hussain, Zahoor
    Singh, Zora
    SCIENTIA HORTICULTURAE, 2015, 190 : 203 - 210