Large-amplitude oscillatory shear: comparing parallel-disk with cone-plate flow

被引:35
|
作者
Giacomin, A. Jeffrey [1 ]
Gilbert, Peter H. [1 ]
Merger, Dimitri [2 ]
Wilhelm, Manfred [2 ]
机构
[1] Queens Univ, Dept Chem Engn, Polymers Res Grp, Kingston, ON K7L 3N6, Canada
[2] Karlsruhe Inst Technol, Inst Tech & Polymerchem, D-76131 Karlsruhe, Germany
关键词
Rheology; Oscillatory shear; Large-amplitude oscillatory shear; WEISSENBERG RHEOGONIOMETER; RHEOLOGICAL BEHAVIOR; DYNAMIC PERFORMANCE; PARTITIONED-PLATE; FLUID INERTIA; FT-RHEOLOGY; SENSITIVITY; PERIODICITY; RHEOMETER; MELTS;
D O I
10.1007/s00397-014-0819-6
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We compare the ratio of the amplitudes of the third to the first harmonic of the torque, , measured in rotational parallel-disk flow, with the ratio of the corresponding harmonics of the shear stress, |tau (3)|/|tau (1)|, that would be observed in sliding-plate or cone-plate flow. In other words, we seek a correction factor with which must be multiplied, to get the quantity |tau (3)|/|tau (1)|, where |tau (3)|/|tau (1)| is obtained from any simple shearing flow geometry. In this paper, we explore theoretically, the disagreement between and tau (3)/tau (1) using the simplest continuum model relevant to large-amplitude oscillatory shear flow: the single relaxation time co-rotational Maxwell model. We focus on the region where the harmonic amplitudes and thus, their ratios, can be fully described with power laws. This gives the expression for , by integrating the explicit analytical solution for the shear stress. In the power law region, we find that, for low Weissenberg numbers, for the third harmonics , and for the fifth harmonics, . We verify these results experimentally. In other words, the heterogeneous flow field of the parallel-disk geometry significantly attenuates the higher harmonics, when compared with the homogeneous, sliding-plate flow. This is because only the outermost part of the sample is subject to the high shear rate amplitude. Furthermore, our expression for the torque in large-amplitude oscillatory parallel-disk flow is also useful for the simplest design of viscous torsional dampers, that is, those incorporating a viscoelastic liquid between two disks.
引用
收藏
页码:263 / 285
页数:23
相关论文
共 50 条
  • [21] Temperature Rise in Large-Amplitude Oscillatory Shear Flow from Shear Stress Measurements
    Giacomin, A. J.
    Bird, R. B.
    Baek, H. M.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (05) : 2008 - 2017
  • [22] Power series for shear stress of polymeric liquid in large-amplitude oscillatory shear flow
    Pongthep Poungthong
    Chaimongkol Saengow
    Alan Jeffrey Giacomin
    Chanyut Kolitawong
    Korea-Australia Rheology Journal, 2018, 30 : 169 - 178
  • [23] Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear
    Poulos, Andreas S.
    Stellbrink, Joerg
    Petekidis, George
    RHEOLOGICA ACTA, 2013, 52 (8-9) : 785 - 800
  • [24] Pade approximant for normal stress differences in large-amplitude oscillatory shear flow
    Poungthong, P.
    Saengow, C.
    Giacomin, A. J.
    Kolitawong, C.
    Merger, D.
    Wilhelm, M.
    PHYSICS OF FLUIDS, 2018, 30 (04)
  • [25] Flow of concentrated solutions of starlike micelles under large-amplitude oscillatory shear
    Andreas S. Poulos
    Jörg Stellbrink
    George Petekidis
    Rheologica Acta, 2013, 52 : 785 - 800
  • [26] A CONSTITUTIVE THEORY FOR POLYOLEFINS IN LARGE-AMPLITUDE OSCILLATORY SHEAR
    GIACOMIN, AJ
    JEYASEELAN, RS
    POLYMER ENGINEERING AND SCIENCE, 1995, 35 (09): : 768 - 777
  • [27] Dilute rigid dumbbell suspensions in large-amplitude oscillatory shear flow: Shear stress response
    Bird, R. B.
    Giacomin, A. J.
    Schmalzer, A. M.
    Aumnate, C.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (07):
  • [28] Molecular origins of higher harmonics in large-amplitude oscillatory shear flow: Shear stress response
    Gilbert, P. H.
    Giacomin, A. J.
    PHYSICS OF FLUIDS, 2016, 28 (10)
  • [29] Normal Stress Differences of Human Blood in Unidirectional Large-Amplitude Oscillatory Shear Flow
    Saengow, Chaimongkol
    Giacomin, Alan Jeffrey
    Dimitrov, Andrea Stephanie
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (12):
  • [30] Normal stress differences in large-amplitude oscillatory shear flow for the corotational “ANSR” model
    Alan Jeffrey Giacomin
    Robert Byron Bird
    Rheologica Acta, 2011, 50 : 741 - 752