Wasserstein Statistics in One-Dimensional Location-Scale Models

被引:1
|
作者
Amari, Shun-ichi [1 ]
Matsuda, Takeru [1 ]
机构
[1] RIKEN, Ctr Brain Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
来源
关键词
Information geometry; Location-scale model; Optimal transport; Wasserstein distance;
D O I
10.1007/978-3-030-80209-7_54
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we analyze statistical inference based on the Wasserstein geometry in the case that the base space is one-dimensional. By using the location-scale model, we derive theW-estimator that explicitly minimizes the transportation cost from the empirical distribution to a statistical model and study its asymptotic behaviors. We show that the W-estimator is consistent and explicitly give its asymptotic distribution by using the functional delta method. The W-estimator is Fisher efficient in the Gaussian case.
引用
收藏
页码:499 / 506
页数:8
相关论文
共 50 条
  • [41] STATISTICS OF ONE-DIMENSIONAL CLUSTER MOTION
    WRIGLEY, JD
    REED, DA
    EHRLICH, G
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1977, 67 (02): : 781 - 792
  • [42] Statistics of the one-dimensional Riemann walk
    Mariz, AM
    van Wijland, F
    Hilhorst, HJ
    Gomes, SR
    Tsallis, C
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2001, 102 (1-2) : 259 - 283
  • [43] Statistics of defects in one-dimensional components
    Todinov, MT
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2002, 24 (04) : 430 - 442
  • [44] Statistics of the One-Dimensional Riemann Walk
    A. M. Mariz
    F. van Wijland
    H. J. Hilhorst
    S. R. Gomes Júnior
    C. Tsallis
    [J]. Journal of Statistical Physics, 2001, 102 : 259 - 283
  • [45] On hypothesis testing inference in location-scale models under model misspecification
    Queiroz, Francisco F.
    Lemonte, Artur J.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (11) : 2080 - 2097
  • [46] Bartlett corrected likelihood ratio tests in location-scale nonlinear models
    Cordeiro, GM
    Montenegro, LCC
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2001, 30 (07) : 1353 - 1372
  • [47] EQUIVARIANT PREDICTION OF THE POPULATION VARIANCE UNDER LOCATION-SCALE SUPERPOPULATION MODELS
    ZACKS, S
    BOLFARINE, H
    [J]. SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES B, 1991, 53 : 288 - 296
  • [48] Bayesian prediction based on a class of shrinkage priors for location-scale models
    Fumiyasu Komaki
    [J]. Annals of the Institute of Statistical Mathematics, 2007, 59 : 135 - 146
  • [49] Statistics of one-dimensional compressible turbulence with random large-scale force
    Ni, Qionglin
    Shi, Yipeng
    Chen, Shiyi
    [J]. PHYSICS OF FLUIDS, 2013, 25 (07)
  • [50] Inference in Two-Piece Location-Scale Models with Jeffreys Priors
    Rubio, Francisco J.
    Steel, Mark F. J.
    [J]. BAYESIAN ANALYSIS, 2014, 9 (01): : 1 - 21