Wasserstein Statistics in One-Dimensional Location-Scale Models

被引:1
|
作者
Amari, Shun-ichi [1 ]
Matsuda, Takeru [1 ]
机构
[1] RIKEN, Ctr Brain Sci, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
来源
关键词
Information geometry; Location-scale model; Optimal transport; Wasserstein distance;
D O I
10.1007/978-3-030-80209-7_54
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this study, we analyze statistical inference based on the Wasserstein geometry in the case that the base space is one-dimensional. By using the location-scale model, we derive theW-estimator that explicitly minimizes the transportation cost from the empirical distribution to a statistical model and study its asymptotic behaviors. We show that the W-estimator is consistent and explicitly give its asymptotic distribution by using the functional delta method. The W-estimator is Fisher efficient in the Gaussian case.
引用
收藏
页码:499 / 506
页数:8
相关论文
共 50 条
  • [1] Wasserstein statistics in one-dimensional location scale models
    Shun-ichi Amari
    Takeru Matsuda
    [J]. Annals of the Institute of Statistical Mathematics, 2022, 74 : 33 - 47
  • [2] Wasserstein statistics in one-dimensional location scale models
    Amari, Shun-ichi
    Matsuda, Takeru
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2022, 74 (01) : 33 - 47
  • [3] Minimal sufficient statistics in location-scale parameter models
    Mattner, L
    [J]. BERNOULLI, 2000, 6 (06) : 1121 - 1134
  • [4] Warped Metrics for Location-Scale Models
    Said, Salem
    Berthoumieu, Yannick
    [J]. GEOMETRIC SCIENCE OF INFORMATION, GSI 2017, 2017, 10589 : 631 - 638
  • [5] FUZZY ESTIMATION OF THE PARAMETERS IN LOCATION-SCALE MODELS
    Thiagarajah, K.
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2008, 10 (02) : 247 - 258
  • [6] Estimation for location-scale models with censored data
    Lu, Xuewen
    Singh, R. S.
    Desmond, A. F.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2007, 36 (06) : 1069 - 1089
  • [7] Location-scale models for meta-analysis
    Viechtbauer, Wolfgang
    Antonio Lopez-Lopez, Jose
    [J]. RESEARCH SYNTHESIS METHODS, 2022, 13 (06) : 697 - 715
  • [8] SIMULTANEOUS EQUIVARIANT ESTIMATION FOR LOCATION-SCALE MODELS
    PRABAKARAN, TE
    CHANDRASEKAR, B
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 40 (01) : 51 - 59
  • [9] Frontier estimation in nonparametric location-scale models
    Florens, Jean-Pierre
    Simar, Leopold
    Van Keilegom, Ingrid
    [J]. JOURNAL OF ECONOMETRICS, 2014, 178 : 456 - 470
  • [10] Probing the exchange statistics of one-dimensional anyon models
    Greschner, Sebastian
    Cardarelli, Lorenzo
    Santos, Luis
    [J]. PHYSICAL REVIEW A, 2018, 97 (05)