Curvature Invariants for Lorentzian Traversable Wormholes

被引:9
|
作者
Mattingly, Brandon [1 ,2 ]
Kar, Abinash [1 ,2 ]
Julius, William [1 ,2 ]
Gorban, Matthew [1 ,2 ]
Watson, Cooper [1 ,2 ]
Ali, M. D. [1 ,2 ]
Baas, Andrew [1 ,2 ]
Elmore, Caleb [1 ,2 ]
Shakerin, Bahram [1 ,2 ]
Davis, Eric [1 ,3 ]
Cleaver, Gerald [1 ,2 ]
机构
[1] Baylor Univ, CASPER, Cosmol & Strings EUCOS Grp, Early Universe, Waco, TX 76798 USA
[2] Baylor Univ, Dept Phys, Waco, TX 76798 USA
[3] Inst Adv Studies Austin, 11855 Res Blvd, Austin, TX 78759 USA
关键词
traversable wormhole; curvature invariant; Carminati and McLenaghan; general relativity; RIEMANN TENSOR; ENERGY; TRAVEL;
D O I
10.3390/universe6010011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The curvature invariants of three Lorentzian wormholes are calculated and plotted in this paper. The plots may be inspected for discontinuities to analyze the traversability of a wormhole. This approach was formulated by Henry, Overduin, and Wilcomb for black holes (Henry et al., 2016). Curvature invariants are independent of coordinate basis, so the process is free of coordinate mapping distortions and the same regardless of your chosen coordinates (Christoffel, E.B., 1869; Stephani, et al., 2003). The four independent Carminati and McLenaghan (CM) invariants are calculated and the nonzero curvature invariant functions are plotted (Carminati et al., 1991; Santosuosso et al., 1998). Three traversable wormhole line elements analyzed include the (i) spherically symmetric Morris and Thorne, (ii) thin-shell Schwarzschild wormholes, and (iii) the exponential metric (Visser, M., 1995; Boonserm et al., 2018).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Regenesis and quantum traversable wormholes
    Gao, Ping
    Liu, Hong
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (10)
  • [32] The shadow of charged traversable wormholes
    Neto, Mario Raia
    Perez, Daniela
    Pelle, Joaquin
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2023, 32 (02):
  • [33] Regenesis and quantum traversable wormholes
    Ping Gao
    Hong Liu
    [J]. Journal of High Energy Physics, 2019
  • [34] Bubble universes and traversable wormholes
    Lemos, Jose P. S.
    Luz, Paulo
    [J]. PHYSICAL REVIEW D, 2022, 105 (04)
  • [35] MODIFIED CHAPLYGIN TRAVERSABLE WORMHOLES
    Chakraborty, Subenoy
    Bandyopadhyay, Tanwi
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2009, 18 (03): : 463 - 476
  • [36] Traversable wormholes: The Roman ring
    Visser, M
    [J]. PHYSICAL REVIEW D, 1997, 55 (08): : 5212 - 5214
  • [37] Unimodular gravity traversable wormholes
    A. S. Agrawal
    B. Mishra
    P. H. R. S. Moraes
    [J]. The European Physical Journal Plus, 138
  • [38] Unimodular gravity traversable wormholes
    Agrawal, A. S.
    Mishra, B.
    Moraes, P. H. R. S.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2023, 138 (03):
  • [39] Traversable wormholes and Yukawa potentials
    Garattini, Remo
    [J]. 15TH MARCEL GROSSMANN MEETING, PT A, 2022, : 546 - 551
  • [40] Unified first law for traversable wormholes in non-minimal coupling of curvature and matter
    Rehman, Mudassar
    Saifullah, Khalid
    [J]. ANNALS OF PHYSICS, 2019, 407 : 57 - 65