Curvature Invariants for Lorentzian Traversable Wormholes

被引:9
|
作者
Mattingly, Brandon [1 ,2 ]
Kar, Abinash [1 ,2 ]
Julius, William [1 ,2 ]
Gorban, Matthew [1 ,2 ]
Watson, Cooper [1 ,2 ]
Ali, M. D. [1 ,2 ]
Baas, Andrew [1 ,2 ]
Elmore, Caleb [1 ,2 ]
Shakerin, Bahram [1 ,2 ]
Davis, Eric [1 ,3 ]
Cleaver, Gerald [1 ,2 ]
机构
[1] Baylor Univ, CASPER, Cosmol & Strings EUCOS Grp, Early Universe, Waco, TX 76798 USA
[2] Baylor Univ, Dept Phys, Waco, TX 76798 USA
[3] Inst Adv Studies Austin, 11855 Res Blvd, Austin, TX 78759 USA
关键词
traversable wormhole; curvature invariant; Carminati and McLenaghan; general relativity; RIEMANN TENSOR; ENERGY; TRAVEL;
D O I
10.3390/universe6010011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The curvature invariants of three Lorentzian wormholes are calculated and plotted in this paper. The plots may be inspected for discontinuities to analyze the traversability of a wormhole. This approach was formulated by Henry, Overduin, and Wilcomb for black holes (Henry et al., 2016). Curvature invariants are independent of coordinate basis, so the process is free of coordinate mapping distortions and the same regardless of your chosen coordinates (Christoffel, E.B., 1869; Stephani, et al., 2003). The four independent Carminati and McLenaghan (CM) invariants are calculated and the nonzero curvature invariant functions are plotted (Carminati et al., 1991; Santosuosso et al., 1998). Three traversable wormhole line elements analyzed include the (i) spherically symmetric Morris and Thorne, (ii) thin-shell Schwarzschild wormholes, and (iii) the exponential metric (Visser, M., 1995; Boonserm et al., 2018).
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Shadows of Lorentzian traversable wormholes
    Rahaman, Farook
    Singh, Ksh Newton
    Shaikh, Rajibul
    Manna, Tuhina
    Aktar, Somi
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2021, 38 (21)
  • [2] Gravitinos tunneling from traversable Lorentzian wormholes
    I. Sakalli
    A. Ovgun
    [J]. Astrophysics and Space Science, 2015, 359
  • [3] Thermal radiation from lorentzian traversable wormholes
    Martin-Moruno, Prado
    Gonzalez-Diaz, Pedro F.
    [J]. SPANISH RELATIVITY MEETING (ERE 2010): GRAVITY AS A CROSSROAD IN PHYSICS, 2011, 314
  • [4] Gravitinos tunneling from traversable Lorentzian wormholes
    Sakalli, I.
    Ovgun, A.
    [J]. ASTROPHYSICS AND SPACE SCIENCE, 2015, 359 (01)
  • [5] Semiclassical and quantum field theoretic bounds for traversable Lorentzian stringy wormholes
    Nandi, KK
    Zhang, YZ
    Kumar, KBV
    [J]. PHYSICAL REVIEW D, 2004, 70 (06): : 064018 - 1
  • [6] Lorentzian manifolds and scalar curvature invariants
    Coley, Alan
    Hervik, Sigbjorn
    Pelavas, Nicos
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (10)
  • [7] Traversable Lorentzian wormholes in Brans-Dicke's and induced gravity theories
    Zhao, F
    Liu, L
    [J]. CHINESE PHYSICS LETTERS, 1996, 13 (12) : 881 - 884
  • [8] Rotating traversable wormholes
    Teo, E
    [J]. PHYSICAL REVIEW D, 1998, 58 (02): : 240141 - 240146
  • [9] Diving into traversable wormholes
    Maldacena, Juan
    Stanford, Douglas
    Yang, Zhenbin
    [J]. FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2017, 65 (05):
  • [10] Humanly traversable wormholes
    Maldacena, Juan
    Milekhin, Alexey
    [J]. PHYSICAL REVIEW D, 2021, 103 (06)