K-Means Clustering-Based Electrical Equipment Identification for Smart Building Application

被引:27
|
作者
Zhang, Guiqing [1 ,2 ]
Li, Yong [1 ,2 ]
Deng, Xiaoping [1 ,2 ]
机构
[1] Shandong Jianzhu Univ, Sch Informat & Elect Engn, Jinan 250101, Peoples R China
[2] Shandong Prov Key Lab Intelligent Bldg Technol, Jinan 250101, Peoples R China
基金
中国国家自然科学基金;
关键词
Building Internet of Things; equipment identification; K-means clustering; euclidean distance; FEATURE-EXTRACTION; APPLIANCES; ALGORITHM; FAULT; MODEL;
D O I
10.3390/info11010027
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the development and popular application of Building Internet of Things (BIoT) systems, numerous types of equipment are connected, and a large volume of equipment data is collected. For convenient equipment management, the equipment should be identified and labeled. Traditionally, this process is performed manually, which not only is time consuming but also causes unavoidable omissions. In this paper, we propose a k-means clustering-based electrical equipment identification toward smart building application that can automatically identify the unknown equipment connected to BIoT systems. First, load characteristics are analyzed and electrical features for equipment identification are extracted from the collected data. Second, k-means clustering is used twice to construct the identification model. Preliminary clustering adopts traditional k-means algorithm to the total harmonic current distortion data and separates equipment data into two to three clusters on the basis of their electrical characteristics. Later clustering uses an improved k-means algorithm, which weighs Euclidean distance and uses the elbow method to determine the number of clusters and analyze the results of preliminary clustering. Then, the equipment identification model is constructed by selecting the cluster centroid vector and distance threshold. Finally, identification results are obtained online on the basis of the model outputs by using the newly collected data. Successful applications to BIoT system verify the validity of the proposed identification method.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Multipath Detection based on K-means Clustering
    Savas, Caner
    Dovis, Fabio
    PROCEEDINGS OF THE 32ND INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2019), 2019, : 3801 - 3811
  • [42] Rough Entropy Based k-Means Clustering
    Malyszko, Dariusz
    Stepaniuk, Jaroslaw
    ROUGH SETS, FUZZY SETS, DATA MINING AND GRANULAR COMPUTING, PROCEEDINGS, 2009, 5908 : 406 - 413
  • [43] A Clustering Method Based on K-Means Algorithm
    Li, Youguo
    Wu, Haiyan
    INTERNATIONAL CONFERENCE ON SOLID STATE DEVICES AND MATERIALS SCIENCE, 2012, 25 : 1104 - 1109
  • [44] Distributed Clustering Based on K-means and CPGA
    Zhou, Jun
    Liu, Zhijing
    FIFTH INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY, VOL 2, PROCEEDINGS, 2008, : 444 - 447
  • [45] A Novel MapReduce Based k-Means Clustering
    Sinha, Ankita
    Jana, Prasanta K.
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND COMMUNICATION, 2017, 458 : 247 - 255
  • [46] Entropy Based Soft K-means Clustering
    Bai, Xue
    Luo, Siwei
    Zhao, Yibiao
    2008 IEEE INTERNATIONAL CONFERENCE ON GRANULAR COMPUTING, VOLS 1 AND 2, 2008, : 107 - 110
  • [47] Locality Preserving Based K-Means Clustering
    Yang, Xiaohuan
    Wang, Xiaoming
    Tian, Yong
    Du, Yajun
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: BIG DATA AND MACHINE LEARNING TECHNIQUES, ISCIDE 2015, PT II, 2015, 9243 : 86 - 95
  • [49] Building an Effective Visual Codebook: Is K-Means Clustering Useful?
    Chavez, Aaron
    Gustafson, David
    ADVANCES IN VISUAL COMPUTING, ISVC 2012, PT II, 2012, 7432 : 517 - 525
  • [50] Mahalanobis Distance Based K-Means Clustering
    Brown, Paul O.
    Chiang, Meng Ching
    Guo, Shiqing
    Jin, Yingzi
    Leung, Carson K.
    Murray, Evan L.
    Pazdor, Adam G. M.
    Cuzzocrea, Alfredo
    BIG DATA ANALYTICS AND KNOWLEDGE DISCOVERY, DAWAK 2022, 2022, 13428 : 256 - 262