Hallmarks of the Kardar-Parisi-Zhang universality class elicited by scanning probe microscopy

被引:14
|
作者
Alves, Sidiney G. [1 ]
de Araujo, Clodoaldo I. L. [2 ]
Ferreira, Silvio C. [2 ]
机构
[1] Univ Fed Sao Joao del Rei, Dept Fis & Matemat, BR-36420000 Ouro Branco, MG, Brazil
[2] Univ Fed Vicosa, Dept Fis, BR-36570000 Vicosa, MG, Brazil
来源
NEW JOURNAL OF PHYSICS | 2016年 / 18卷
关键词
scanning probe microscopy; interface growth; KPZ equation; GROWING INTERFACES; GROWTH; FLUCTUATIONS; DISTRIBUTIONS; DEPOSITION; GEOMETRY; MODEL;
D O I
10.1088/1367-2630/18/9/093018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Scanning probe microscopy is a fundamental technique for the analysis of surfaces. In the present work, the interface statistics of surfaces scanned with a probe tip is analyzed for both in silico and experimental systems that, in principle, do not belong to the prominent Kardar-Parisi-Zhang universality class. We observe that some features such as height, local roughness and extremal height distributions of scanned surfaces quantitatively agree with the KPZ class with good accuracy. The underlying mechanism behind this artifactual KPZ class is the finite size of the probe tip, which does not permit a full resolution of neither deep valleys nor sloping borders of plateaus. The net result is a scanned profile laterally thicker and higher than the original one implying an excess growth, a major characteristic of the KPZ universality class. Our results are of relevance whenever either the normal or lateral characteristic lengths of the surface are comparable with those of the probe tip. Thus our finds can be relevant, for example, in experiments where sufficiently long growth times cannot be achieved or in mounded surfaces with high aspect ratio.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Patterns in the Kardar-Parisi-Zhang equation
    Fogedby, Hans C.
    PRAMANA-JOURNAL OF PHYSICS, 2008, 71 (02): : 253 - 262
  • [32] Universality of fluctuations in the Kardar-Parisi-Zhang class in high dimensions and its upper critical dimension
    Alves, S. G.
    Oliveira, T. J.
    Ferreira, S. C.
    PHYSICAL REVIEW E, 2014, 90 (02):
  • [33] Kardar-Parisi-Zhang universality in a one-dimensional polariton condensate
    Fontaine, Quentin
    Squizzato, Davide
    Baboux, Florent
    Amelio, Ivan
    Lemaitre, Aristide
    Morassi, Martina
    Sagnes, Isabelle
    Le Gratiet, Luc
    Harouri, Abdelmounaim
    Wouters, Michiel
    Carusotto, Iacopo
    Amo, Alberto
    Richard, Maxime
    Minguzzi, Anna
    Canet, Leonie
    Ravets, Sylvain
    Bloch, Jacqueline
    NATURE, 2022, 608 (7924) : 687 - +
  • [34] Patterns in the Kardar-Parisi-Zhang equation
    Hans C. Fogedby
    Pramana, 2008, 71 : 253 - 262
  • [35] Persistence of Kardar-Parisi-Zhang interfaces
    Kallabis, H
    Krug, J
    EUROPHYSICS LETTERS, 1999, 45 (01): : 20 - 25
  • [36] Kardar-Parisi-Zhang universality class in the synchronization of oscillator lattices with time-dependent noise
    Gutierrez, Ricardo
    Cuerno, Rodolfo
    PHYSICAL REVIEW E, 2024, 110 (05)
  • [37] GENERALIZATIONS OF THE KARDAR-PARISI-ZHANG EQUATION
    DOHERTY, JP
    MOORE, MA
    KIM, JM
    BRAY, AJ
    PHYSICAL REVIEW LETTERS, 1994, 72 (13) : 2041 - 2044
  • [38] ON THE RENORMALIZATION OF THE KARDAR-PARISI-ZHANG EQUATION
    LASSIG, M
    NUCLEAR PHYSICS B, 1995, 448 (03) : 559 - 574
  • [39] A modified Kardar-Parisi-Zhang model
    Da Prato, Giuseppe
    Debussche, Arnaud
    Tubaro, Luciano
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2007, 12 : 442 - 453
  • [40] The 1D Kardar-Parisi-Zhang equation: Height distribution and universality
    Sasamoto, Tomohiro
    PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (02):