Deep learning-based hologram generation using a generative model

被引:13
|
作者
Kang, Ji-Won [1 ]
Park, Byung-Seo [1 ]
Kim, Jin-Kyum [1 ]
Kim, Dong-Wook [1 ]
Seo, Young-Ho [1 ]
机构
[1] Kwangwoon Univ, Dept Elect Mat Engn, 20 Kwangwoon Ro, Seoul 01897, South Korea
基金
新加坡国家研究基金会;
关键词
FRONT-RECORDING PLANE;
D O I
10.1364/AO.427262
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We propose a new learning and inferring model that generates digital holograms using deep neural networks (DNNs). This DNN uses a generative adversarial network, trained to infer a complex two-dimensional fringe pattern from a single object point. The intensity and fringe patterns inferred for each object point were multiplied, and all the fringe patterns were accumulated to generate a perfect hologram. This method can achieve generality by recording holograms for two spaces (16 Space and 32 Space). The reconstruction results of both spaces proved to be almost the same as numerical computer-generated holograms by showing the performance at 44.56 and 35.11 dB, respectively. Through displaying the generated hologram in the optical equipment, we proved that the holograms generated by the proposed DNN can be optically reconstructed. (C) 2021 Optical Society of America
引用
收藏
页码:7391 / 7399
页数:9
相关论文
共 50 条
  • [41] GraphTune: A Learning-Based Graph Generative Model With Tunable Structural Features
    Watabe, Kohei
    Nakazawa, Shohei
    Sato, Yoshiki
    Tsugawa, Sho
    Nakagawa, Kenji
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (04): : 2226 - 2238
  • [42] A Deep Learning-Based Pipeline for the Generation of Synthetic Tabular Data
    Panfilo, Daniele
    Boudewijn, Alexander
    Saccani, Sebastiano
    Coser, Andrea
    Svara, Borut
    Chauvenet, Carlo Rossi
    Mami, Ciro Antonio
    Medvet, Eric
    IEEE ACCESS, 2023, 11 : 63306 - 63323
  • [43] Deep learning-based digital subtraction angiography image generation
    Yufeng Gao
    Yu Song
    Xiangrui Yin
    Weiwen Wu
    Lu Zhang
    Yang Chen
    Wanyin Shi
    International Journal of Computer Assisted Radiology and Surgery, 2019, 14 : 1775 - 1784
  • [44] Deep Learning-Based Pulmonary Artery Surface Mesh Generation
    Krueger, Nina
    Bruening, Jan
    Goubergrits, Leonid
    Ivantsits, Matthias
    Walczak, Lars
    Falk, Volkmar
    Dreger, Henryk
    Kuehne, Titus
    Hennemuth, Anja
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART. REGULAR AND CMRXRECON CHALLENGE PAPERS, STACOM 2023, 2024, 14507 : 140 - 151
  • [45] Deep learning-based digital subtraction angiography image generation
    Gao, Yufeng
    Song, Yu
    Yin, Xiangrui
    Wu, Weiwen
    Zhang, Lu
    Chen, Yang
    Shi, Wanyin
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (10) : 1775 - 1784
  • [46] Development of deep learning-based holographic ultrasound generation algorithm
    Lee, Moon Hwan
    Hwang, Jae Youn
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2021, 40 (02): : 169 - 175
  • [47] Deep Learning-Based Bioactive Therapeutic Peptide Generation and Screening
    Zhang, Haiping
    Saravanan, Konda Mani
    Wei, Yanjie
    Jiao, Yang
    Yang, Yang
    Pan, Yi
    Wu, Xuli
    Zhang, John Z. H.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (03) : 835 - 845
  • [48] A deep learning-based approach for machining process route generation
    Zhang, Yajun
    Zhang, Shusheng
    Huang, Rui
    Huang, Bo
    Yang, Lei
    Liang, Jiachen
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2021, 115 (11-12): : 3493 - 3511
  • [49] DEEP REINFORCEMENT LEARNING-BASED AUTOMATIC TEST PATTERN GENERATION
    Li, Wenxing
    Lyu, Hongqin
    Liang, Shengwen
    Liu, Zizhen
    Lin, Ning
    Wang, Zhongrui
    Tian, Pengyu
    Wang, Tiancheng
    Li, Huawei
    CONFERENCE OF SCIENCE & TECHNOLOGY FOR INTEGRATED CIRCUITS, 2024 CSTIC, 2024,
  • [50] Classification of Image and Text Data Using Deep Learning-Based LSTM Model
    Yechuri, Praveen Kumar
    Ramadass, Suguna
    TRAITEMENT DU SIGNAL, 2021, 38 (06) : 1809 - 1817