On fuzzy-rough sets approach to feature selection

被引:139
|
作者
Bhatt, RB [1 ]
Gopal, M [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Control Grp, New Delhi 110016, India
关键词
computational complexity; feature selection; fuzzy sets; rough sets;
D O I
10.1016/j.patrec.2004.09.044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we have shown that the fuzzy-rough set attribute reduction algorithm [Jenson, R., Shen, Q., 2002. Fuzzy-rough sets for descriptive dimensionality reduction. In: Proceedings of IEEE International Conference on Fuzzy Systems, FUZZ-IEEE ' 02, May 12-17, pp. 29-34] is not convergent on many real datasets due to its poorly designed termination criteria; and the computational complexity of the algorithm increases exponentially with increase in the number of input variables and in multiplication with the size of data patterns. Based on natural properties of fuzzy t-norm and t-conorm, we have put forward the concept of fuzzy-rough sets on compact computational domain, which is then utilized to improve the computational efficiency of FRSAR algorithm. Speed up factor as high as 622 have been achieved with this concept with improved accuracy. We also restructure the algorithm with efficient termination criteria to achieve the convergence on all the datasets and to improve the reliability of selected set of features. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:965 / 975
页数:11
相关论文
共 50 条
  • [21] Feature Selection With Fuzzy-Rough Minimum Classification Error Criterion
    Wang, Changzhong
    Qian, Yuhua
    Ding, Weiping
    Fan, Xiaodong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (08) : 2930 - 2942
  • [22] Simultaneous Feature And Instance Selection Using Fuzzy-Rough Bireducts
    Mac Parthalain, Neil
    Jensen, Richard
    2013 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ - IEEE 2013), 2013,
  • [23] Fuzzy-Rough Feature Selection Based on λ-Partition Differentiation Entropy
    Sun, Qian
    Qu, Yanpeng
    Deng, Ansheng
    Yang, Longzhi
    2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,
  • [24] Fuzzy-Rough Simultaneous Attribute Selection and Feature Extraction Algorithm
    Maji, Pradipta
    Garai, Partha
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (04) : 1166 - 1177
  • [25] Mixture Kernel-Based Fuzzy-Rough Feature Selection
    Song, Xiangxin
    Yue, Guanli
    Mac Parthalain, Neil
    Qu, Yanpeng
    ADVANCES IN COMPUTATIONAL INTELLIGENCE SYSTEMS, UKCI 2022, 2024, 1454 : 3 - 12
  • [26] Nearest Neighbour-Based Fuzzy-Rough Feature Selection
    Jensen, Richard
    Mac Parthalain, Neil
    ROUGH SETS AND CURRENT TRENDS IN SOFT COMPUTING, RSCTC 2014, 2014, 8536 : 35 - 46
  • [27] Third Order Backward Elimination Approach for Fuzzy-Rough Set Based Feature Selection
    Ghosh, Soumen
    Prasad, P. S. V. S. Sai
    Rao, C. Raghavendra
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2017, 2017, 10597 : 254 - 262
  • [28] Fuzzy-Rough Instance Selection
    Jensen, Richard
    Cornelis, Chris
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [29] A New Fuzzy-rough Feature Selection Algorithm for Mammographic Risk Analysis
    Guo, Qian
    Qu, Yanpeng
    Deng, Ansheng
    Yang, Longzhi
    2016 12TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2016, : 934 - 939
  • [30] An intuitionistic fuzzy-rough set model and its application to feature selection
    Tiwari, Anoop Kumar
    Shreevastava, Shivam
    Subbiah, Karthikeyan
    Som, T.
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (05) : 4969 - 4979