Efficient Implementation of Apriori Algorithm on HDFS using GPU

被引:0
|
作者
Tiwary, Mayank [1 ]
Sahoo, Abhaya Kumar [1 ]
Misra, Rachita [1 ]
机构
[1] CV Raman Coll Engn, Dept Informat Technol, Bhubaneswar, Orissa, India
关键词
Hadoop; Map-reduce; CUDA; GPU; Apriori;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A very efficient distributed processing framework is provided by Hadoop. For processing big data, Hadoop uses map-reduce programming model. The proposed technique uses parallel apriori map-reduce algorithm using high performance GPU. The computationally intensive operations of mapping phase are offloaded to GPU. Apriori is a very basic data mining algorithm which is used to determine the frequent item sets in the transactional database. In Hadoop, big transactional database are stored in structured form. When the size of transactional database is big, very fast apriori technique is required to solve the problem. Past researches show a clear view of solving data mining operations in heterogeneous environment which increase the performance with a very high rate than older serial execution techniques. This paper introduces integration of GPU in map-reduce programming model to solve the apriori data mining technique in a very time efficient manner. For our experimental implementation, we use NVIDIA's GPU and for the integration process, we use JCUDA and JNI.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] An Efficient AC Algorithm with GPU
    Hu, Liang
    Wei, Zhen
    Wang, Feng
    Zhang, Xiaolu
    Zhao, Kuo
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 4249 - 4253
  • [32] GPU implementation of a multiobjective search algorithm
    Steffen Limmer
    Dietmar Fey
    Johannes Jahn
    Positivity, 2012, 16 : 397 - 404
  • [33] TSUNAMI: a GPU implementation of the WFA algorithm
    Gerometta, Giulia
    Zeni, Alberto
    Santambrogio, Marco D.
    2023 32ND INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES, PACT, 2023, : 150 - 161
  • [34] QuaPra: Efficient transcript assembly and quantification using quadratic programming with Apriori algorithm
    Xiangjun Ji
    Weida Tong
    Baitang Ning
    Christopher EMason
    David PKreil
    Pawel PLabaj
    Geng Chen
    Tieliu Shi
    Science China(Life Sciences), 2019, 62 (07) : 937 - 946
  • [35] GPU implementation of a multiobjective search algorithm
    Limmer, Steffen
    Fey, Dietmar
    Jahn, Johannes
    POSITIVITY, 2012, 16 (03) : 397 - 404
  • [36] A parallel Bees Algorithm implementation on GPU
    Luo, Guo-Heng
    Huang, Sheng-Kai
    Chang, Yue-Shan
    Yuan, Shyan-Ming
    JOURNAL OF SYSTEMS ARCHITECTURE, 2014, 60 (03) : 271 - 279
  • [37] QuaPra: Efficient transcript assembly and quantification using quadratic programming with Apriori algorithm
    Xiangjun Ji
    Weida Tong
    Baitang Ning
    Christopher E. Mason
    David P. Kreil
    Pawel P. Labaj
    Geng Chen
    Tieliu Shi
    Science China Life Sciences, 2019, 62 : 937 - 946
  • [38] A GPU Implementation of the Harmonic Sum Algorithm
    Adamek, Karel
    Armour, Wesley
    ASTRONOMICAL DATA ANALYSIS SOFTWARE AND SYSTEMS XXVIII, 2019, 523 : 489 - 492
  • [39] QuaPra: Efficient transcript assembly and quantification using quadratic programming with Apriori algorithm
    Xiangjun Ji
    Weida Tong
    Baitang Ning
    Christopher E.Mason
    David P.Kreil
    Pawel P.Labaj
    Geng Chen
    Tieliu Shi
    Science China(Life Sciences), 2019, (07) : 937 - 946
  • [40] QuaPra: Efficient transcript assembly and quantification using quadratic programming with Apriori algorithm
    Ji, Xiangjun
    Tong, Weida
    Ning, Baitang
    Mason, Christopher E.
    Kreil, David P.
    Labaj, Pawel P.
    Chen, Geng
    Shi, Tieliu
    SCIENCE CHINA-LIFE SCIENCES, 2019, 62 (07) : 937 - 946