Derivation of the Tight-Binding Approximation for Time-Dependent Nonlinear Schrodinger Equations

被引:2
|
作者
Sacchetti, Andrea [1 ]
机构
[1] Univ Modena & Reggio Emilia, Dept Phys Informat & Math, Modena, Italy
来源
ANNALES HENRI POINCARE | 2020年 / 21卷 / 02期
关键词
35Q55; 81Qxx; 81T25; BEHAVIOR;
D O I
10.1007/s00023-019-00872-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we consider the nonlinear one-dimensional time-dependent Schrodinger equation with a periodic potential and a bounded perturbation. In the limit of large periodic potential, the time behavior of the wavefunction can be approximated, with a precise estimate of the remainder term, by means of the solution to the discrete nonlinear Schrodinger equation of the tight-binding model.
引用
收藏
页码:627 / 648
页数:22
相关论文
共 50 条
  • [31] HYBRIDIZATION AND LOCALIZATION IN THE TIGHT-BINDING APPROXIMATION
    DELRE, G
    [J]. THEORETICA CHIMICA ACTA, 1963, 1 (02): : 188 - 197
  • [32] ELECTRONS AND PHONONS IN TIGHT-BINDING APPROXIMATION
    BARISIC, S
    [J]. ANNALES DE PHYSIQUE, 1972, 7 (01) : 23 - &
  • [33] LIMITS OF APPLICABILITY OF THE TIGHT-BINDING APPROXIMATION
    MIRONOV, AL
    OLEINIK, VL
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1994, 99 (01) : 457 - 469
  • [34] Analytical excited state forces for the time-dependent density-functional tight-binding method
    Heringer, D.
    Niehaus, T. A.
    Wanko, M.
    Frauenheim, Th.
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2007, 28 (16) : 2589 - 2601
  • [35] TIME-DEPENDENT DISSIPATION IN NONLINEAR SCHRODINGER SYSTEMS
    LANGE, H
    TOOMIRE, B
    ZWEIFEL, PF
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (03) : 1274 - 1283
  • [36] Nonadiabatic molecular dynamics simulations based on time-dependent density functional tight-binding method
    Wu, Xiaoyan
    Wen, Shizheng
    Song, Huajing
    Frauenheim, Thomas
    Tretiak, Sergei
    Yam, ChiYung
    Zhang, Yu
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2022, 157 (08):
  • [37] Approximation of the time-dependent electronic Schrodinger equation by MCTDHF
    Koch, O
    Kreuzer, W
    Scrinzi, A
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2006, 173 (02) : 960 - 976
  • [38] Painleve Integrability of Nonlinear Schrodinger Equations with both Space- and Time-Dependent Coefficients
    Han, Kyoung Ho
    Shin, H. J.
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2010, 54 (06) : 1101 - 1108
  • [39] On the derivation of nonlinear Schrodinger and Vlasov equations
    Bardos, C
    Golse, F
    Gottlieb, A
    Mauser, NJ
    [J]. DISPERSIVE TRANSPORT EQUATIONS AND MULTISCALE MODELS, 2004, 136 : 1 - 23
  • [40] Time-Dependent Extension of the Long-Range Corrected Density Functional Based Tight-Binding Method
    Kranz, Julian J.
    Elstner, Marcus
    Aradi, Balint
    Frauenheim, Thomas
    Lutsker, Vitalij
    Garcia, Adriel Dominguez
    Niehaus, Thomas A.
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2017, 13 (04) : 1737 - 1747