Exploiting input sparsity for joint state/input moving horizon estimation

被引:16
|
作者
Kirchner, M. [1 ,2 ]
Croes, J. [1 ,2 ]
Cosco, F. [1 ,2 ]
Desmet, W. [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Mech Engn, Celestijnenlaan 300 Box 2420, B-3001 Leuven, Belgium
[2] Flanders Make, Lommel, Belgium
关键词
State estimation; Input estimation; Moving horizon estimation; l(1)-norm optimization; Compressive sensing; COMPRESSED SENSING TECHNIQUES; MINIMUM-VARIANCE INPUT; TIRE FORCE ESTIMATION; STATE ESTIMATION; IDENTIFICATION; RECONSTRUCTION; DAMAGE;
D O I
10.1016/j.ymssp.2017.08.024
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper proposes a novel time domain approach for joint state/input estimation of mechanical systems. The novelty consists of exploiting compressive sensing (CS) principles in a moving horizon estimator (MHE), allowing the observation of a large number of input locations given a small set of measurements. Existing techniques are characterized by intrinsic limitations when estimating multiple input locations, due to an observability decrease. Moreover, CS does not require an input to be characterized by a slow dynamics, which is a requirement of other state of the art techniques for input modeling. In the new approach, called compressive sensing-moving horizon estimator (CS-MHE), the capability of the MHE of minimizing the noise while correlating a model with measurements is enriched with an-norm optimization in order to promote a sparse solution for the input estimation. A numerical example shows that the CS-MHE allows for an unknown input estimation in terms of magnitude, time and location, exploiting the assumption that the input is sparse in time and space. Finally, an experimental setup is presented as validation case. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:237 / 253
页数:17
相关论文
共 50 条
  • [41] State and Input Estimation of Nonlinear Chromatographic Processes
    Horsholt, Alexander
    Christiansen, Lasse Hjuler
    Ritschel, Tobias Kasper
    Meyer, Kristian
    Huusom, Jakob Kjobsted
    Jorgensen, John Bagterp
    2019 3RD IEEE CONFERENCE ON CONTROL TECHNOLOGY AND APPLICATIONS (IEEE CCTA 2019), 2019, : 1030 - 1035
  • [42] Online Input and State Estimation in Structural Dynamics
    Maes, K.
    De Roeck, G.
    Iliopoulos, A.
    Weijtjens, W.
    Devriendt, C.
    Lombaert, G.
    SPECIAL TOPICS IN STRUCTURAL DYNAMICS, VOL 6, 34TH IMAC, 2016, : 1 - 10
  • [43] On the Asymptotic Stability of the Modified Input and State Estimation
    Ding, Bo
    Zhang, Tianping
    Fang, Huajing
    He, Wenliang
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 7 - 12
  • [44] Remarks on moving horizon state estimation with guaranteed convergence
    Raff, T
    Ebenbauer, C
    Findeisen, R
    Allgöwer, F
    CONTROL AND OBSERVER DESIGN FOR NONLINEAR FINITE AND INFINITE DIMENSIONAL SYSTEMS, 2005, 322 : 67 - 80
  • [45] Robust Moving Horizon State Estimation: Application to Bioprocesses
    Tebbani, Sihem
    Le Brusquet, Laurent
    Petre, Emil
    Selisteanu, Dan
    2013 17TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2013, : 539 - 544
  • [46] Robust Moving Horizon State Estimation for Nonlinear Systems
    Liu, Jinfeng
    2013 AMERICAN CONTROL CONFERENCE (ACC), 2013, : 253 - 258
  • [47] Humanoid state estimation using a moving horizon estimator
    Bae, Hyoin
    Oh, Jun-Ho
    Advanced Robotics, 2017, 31 (13): : 695 - 705
  • [48] Humanoid state estimation using a moving horizon estimator
    Bae, Hyoin
    Oh, Jun-Ho
    ADVANCED ROBOTICS, 2017, 31 (13) : 695 - 705
  • [49] Control Horizon Estimation of Input Constrained MPC Based on Control Saturation
    Sun Yong
    Zhang Maorui
    Zhang Ze
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 3377 - 3382
  • [50] Moving horizon state estimation for wireless sensor networks
    Luo Ji'an
    Chai Li
    PROCEEDINGS OF THE 26TH CHINESE CONTROL CONFERENCE, VOL 5, 2007, : 571 - +