Energy-efficient memcapacitor devices for neuromorphic computing

被引:89
|
作者
Demasius, Kai-Uwe [1 ]
Kirschen, Aron [2 ]
Parkin, Stuart [1 ]
机构
[1] Max Planck Inst Microstruct Phys, Halle, Saale, Germany
[2] SEMRON GmbH, Dresden, Germany
关键词
MEMORY; ARRAY;
D O I
10.1038/s41928-021-00649-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Arrays of memcapacitor devices that work via charge shielding can be used to implement artificial neural networks and could potentially offer an energy efficiency of 29,600 tera-operations per second per watt. Data-intensive computing operations, such as training neural networks, are essential for applications in artificial intelligence but are energy intensive. One solution is to develop specialized hardware onto which neural networks can be directly mapped, and arrays of memristive devices can, for example, be trained to enable parallel multiply-accumulate operations. Here we show that memcapacitive devices that exploit the principle of charge shielding can offer a highly energy-efficient approach for implementing parallel multiply-accumulate operations. We fabricate a crossbar array of 156 microscale memcapacitor devices and use it to train a neural network that could distinguish the letters 'M', 'P' and 'I'. Modelling these arrays suggests that this approach could offer an energy efficiency of 29,600 tera-operations per second per watt, while ensuring high precision (6-8 bits). Simulations also show that the devices could potentially be scaled down to a lateral size of around 45 nm.
引用
收藏
页码:748 / 756
页数:9
相关论文
共 50 条
  • [41] Energy-efficient quantum computing
    Ikonen, Joni
    Salmilehto, Juha
    Mottonen, Mikko
    [J]. NPJ QUANTUM INFORMATION, 2017, 3
  • [42] Toward Energy-Efficient Computing
    Brown, David J.
    Reams, Charles
    [J]. COMMUNICATIONS OF THE ACM, 2010, 53 (03) : 50 - 58
  • [43] Energy-efficient quantum computing
    Joni Ikonen
    Juha Salmilehto
    Mikko Möttönen
    [J]. npj Quantum Information, 3
  • [44] Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing
    Dmitry Kireev
    Samuel Liu
    Harrison Jin
    T. Patrick Xiao
    Christopher H. Bennett
    Deji Akinwande
    Jean Anne C. Incorvia
    [J]. Nature Communications, 13
  • [45] Metaplastic and energy-efficient biocompatible graphene artificial synaptic transistors for enhanced accuracy neuromorphic computing
    Kireev, Dmitry
    Liu, Samuel
    Jin, Harrison
    Xiao, T. Patrick
    Bennett, Christopher H.
    Akinwande, Deji
    Incorvia, Jean Anne C.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [46] A FeFET with a novel MFMFIS gate stack: towards energy-efficient and ultrafast NVMs for neuromorphic computing
    Ali, Tarek
    Mertens, Konstantin
    Kuehnel, Kati
    Rudolph, Matthias
    Oehler, Sebastian
    Lehninger, David
    Mueller, Franz
    Revello, Ricardo
    Hoffmann, Raik
    Zimmermann, Katrin
    Kaempfe, Thomas
    Czernohorsky, Malte
    Seidel, Konrad
    Van Houdt, Jan
    Eng, Lukas M.
    [J]. NANOTECHNOLOGY, 2021, 32 (42)
  • [47] Design of Many-Core Big Little μBrains for Energy-Efficient Embedded Neuromorphic Computing
    Varshika, M. Lakshmi
    Balaji, Marsha
    Corradi, Federico
    Das, Anup
    Stuijt, Jan
    Catthoor, Francky
    [J]. PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022), 2022, : 1011 - 1016
  • [48] SENeCA: Scalable Energy-efficient Neuromorphic Computer Architecture
    Yousefzadeh, Amirreza
    Van Schaik, Gert-Jan
    Tahghighi, Mohammad
    Detterer, Paul
    Traferro, Stefano
    Hijdra, Martijn
    Stuijt, Jan
    Corradi, Federico
    Sifalakis, Manolis
    Konijnenburg, Mario
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE CIRCUITS AND SYSTEMS (AICAS 2022): INTELLIGENT TECHNOLOGY IN THE POST-PANDEMIC ERA, 2022, : 371 - 374
  • [49] MEACC: an energy-efficient framework for smart devices using cloud computing systems
    Alsubhi, Khalid
    Imtiaz, Zuhaib
    Raana, Ayesha
    Ashraf, M. Usman
    Hayat, Babur
    [J]. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2020, 21 (06) : 917 - 930
  • [50] MEACC: an energy-efficient framework for smart devices using cloud computing systems
    Khalid Alsubhi
    Zuhaib Imtiaz
    Ayesha Raana
    M. Usman Ashraf
    Babur Hayat
    [J]. Frontiers of Information Technology & Electronic Engineering, 2020, 21 : 917 - 930