Yang-Mills-Higgs versus Connes-Lott

被引:37
|
作者
Iochum, B [1 ]
Schucker, T [1 ]
机构
[1] UNIV AIX MARSEILLE 1,F-13331 MARSEILLE,FRANCE
关键词
D O I
10.1007/BF02104906
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By a suitable choice of variables we show that every Connes-Lott model is a Yang-Mills-Higgs model. The contrary is far from being true. Necessary conditions are given. Our analysis is pedestrian and illustrated by examples.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [31] HEAT FLOW FOR YANG-MILLS-HIGGS FIELDS, PARTⅡ
    FANG YI HONG MINCHUN Centre for Mathematica and its Applications School of Mathematical Sciences The Australian National University Canberra ACT Australia
    Chinese Annals of Mathematics, 2001, (02) : 211 - 222
  • [32] Thermalization and Lyapunov exponents in Yang-Mills-Higgs theory
    Heinz, U
    Hu, CR
    Leupold, S
    Matinyan, SG
    Muller, B
    PHYSICAL REVIEW D, 1997, 55 (04): : 2464 - 2476
  • [34] EXACT YANG-MILLS-HIGGS MONOPOLES .1.
    LEE, SC
    PHYSICAL REVIEW D, 1981, 24 (08): : 2200 - 2208
  • [35] Quantum Bound States in Yang-Mills-Higgs Theory
    Boulton, Lyonell
    Schroers, Bernd J.
    Smedley-Williams, Kim
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 363 (01) : 261 - 287
  • [36] The boundary value problem for Yang-Mills-Higgs fields
    Ai, Wanjun
    Song, Chong
    Zhu, Miaomiao
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (04)
  • [37] YANG-MILLS-HIGGS THEORY ON A COMPACT RIEMANN SURFACE
    NOGUCHI, M
    JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (10) : 2343 - 2346
  • [38] Yang-Mills-Higgs models with higher order derivatives
    Polonyi, Janos
    Siwek, Alicja
    PHYSICAL REVIEW D, 2012, 86 (12):
  • [39] Progress on asymptotic behavior of the Yang-Mills-Higgs flow
    Li Jia-yu
    Zhang Xi
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2013, 28 (04) : 565 - 574
  • [40] ALGEBRAIC-SOLUTIONS OF YANG-MILLS-HIGGS EQUATIONS
    BRIHAYE, Y
    GILLER, S
    KOSINSKI, P
    MODERN PHYSICS LETTERS A, 1995, 10 (11) : 925 - 930