The Friedrichs Model with Singular Continuous Spectrum

被引:0
|
作者
Fujiyoshi, Masato [1 ]
Tasaki, Shuichi [1 ]
机构
[1] Waseda Univ, Dept Appl Phys, Tokyo 1698555, Japan
关键词
singular continuous spectrum; decaying process; Friedrichs model;
D O I
10.1143/JPSJS.72SC.73
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The decay of an unstable state is investigated for the Friedrichs model with a singular continuous spectrum. On the basis of a scaling approach, it is shown that the survival amplitude may exhibit the Mittag-Leffler relaxation. The validity of the scaling approach is investigated numerically as well.
引用
收藏
页码:73 / 76
页数:4
相关论文
共 50 条
  • [31] Friedrichs extensions of Schrodinger operators with singular potentials
    von Keviczky, AB
    Saad, N
    Hall, RL
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 292 (01) : 274 - 293
  • [32] Friedrichs extensions of a class of singular Hamiltonian systems
    Yang, Chen
    Sun, Huaqing
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 293 : 359 - 391
  • [33] FRIEDRICHS EXTENSION OF SINGULAR SYMMETRIC DIFFERENTIAL OPERATORS
    Bao, Qinglan
    Wei, Guangsheng
    Zettl, Anton
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, : 11 - 39
  • [34] FRIEDRICHS EXTENSION OF CERTAIN SINGULAR DIFFERENTIAL OPERATORS
    BAXLEY, JV
    DUKE MATHEMATICAL JOURNAL, 1968, 35 (03) : 455 - &
  • [35] Singular continuous Cantor spectrum for magnetic quantum walks
    C. Cedzich
    J. Fillman
    T. Geib
    A. H. Werner
    Letters in Mathematical Physics, 2020, 110 : 1141 - 1158
  • [36] The absence of singular continuous spectrum for perturbed Jacobi operators
    Zhengqi Fu
    Xiong Li
    Acta Mathematica Scientia, 2024, 44 : 515 - 531
  • [37] Singular continuous Cantor spectrum for magnetic quantum walks
    Cedzich, C.
    Fillman, J.
    Geib, T.
    Werner, A. H.
    LETTERS IN MATHEMATICAL PHYSICS, 2020, 110 (06) : 1141 - 1158
  • [38] Duality and singular continuous spectrum in the almost Mathieu equation
    Gordon, AY
    Jitomirskaya, S
    Last, Y
    Simon, B
    ACTA MATHEMATICA, 1997, 178 (02) : 169 - 183
  • [39] Singular continuous spectrum for the Laplacian on certain sparse trees
    Breuer, Jonathan
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 269 (03) : 851 - 857
  • [40] Singular Continuous Spectrum for a Class of Substitution Hamiltonians II
    David Damanik
    Letters in Mathematical Physics, 2000, 54 : 25 - 31