On Nonlinear Fractional Integro-Differential Equations with Positive Constant Coefficient

被引:9
|
作者
Tate, Shivaji [1 ]
Kharat, V. V. [2 ]
Dinde, H. T. [3 ]
机构
[1] Kisan Veer Mahavidyalaya, Dept Math, Wai 412803, Maharashtra, India
[2] NB Navale Sinhgad Coll Engn Kegaon, Dept Math, Solapur 413255, Maharashtra, India
[3] Karmaveer Bhaurao Patil Coll, Dept Math, Urun Islampur 415409, Maharashtra, India
关键词
Fractional integro-differential equation; existence of solution; continuous dependence; fixed point theorem; Pachpatte's inequality; DIFFERENTIAL-EQUATIONS; CAUCHY-PROBLEM;
D O I
10.1007/s00009-019-1325-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this study is to investigate the existence and other properties of solution of nonlinear fractional integro-differential equations with constant coefficient. Also with the help of Pachpatte's inequality, we prove the continuous dependence of the solutions.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Existence of positive periodic solutions to nonlinear integro-differential equations
    Dorociakova, Bozena
    Olach, Rudolf
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 253 : 287 - 293
  • [22] The unique positive solution for fractional integro-differential equations on infinite intervals
    Zhai, Chengbo
    Wei, Lifang
    [J]. SCIENCEASIA, 2018, 44 (02): : 118 - 124
  • [23] The existence and uniqueness of positive solution for nonlinear singular fractional differential equations with integro-differential boundary value conditions
    Wang, Wen
    Zhang, Lingling
    [J]. 2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 93 - 98
  • [24] Fractional superharmonic functions and the Perron method for nonlinear integro-differential equations
    Korvenpaa, Janne
    Kuusi, Tuomo
    Palatucci, Giampiero
    [J]. MATHEMATISCHE ANNALEN, 2017, 369 (3-4) : 1443 - 1489
  • [25] NEW RESULTS FOR A WEIGHTED NONLINEAR SYSTEM OF FRACTIONAL INTEGRO-DIFFERENTIAL EQUATIONS
    Dahmani, Zoubir
    Abdellaoui, Mohamed Amin
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2014, 29 (03): : 233 - 242
  • [26] Nonlinear boundary value problems of fractional functional integro-differential equations
    Liu, Zhenhai
    Sun, Jihua
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) : 3228 - 3234
  • [27] A block-by-block approach for nonlinear fractional integro-differential equations
    Afiatdoust, F.
    Heydari, M. H.
    Hosseini, M. M.
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2023, 100 (11) : 2140 - 2155
  • [28] Nonlinear fractional integro-differential equations on unbounded domains in a Banach space
    Zhang, Lihong
    Ahmad, Bashir
    Wang, Guotao
    Agarwal, Ravi P.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2013, 249 : 51 - 56
  • [29] Numerical solution of nonlinear fractional integro-differential equations by hybrid functions
    Mashayekhi, S.
    Razzaghi, M.
    [J]. ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2015, 56 : 81 - 89
  • [30] A nonlocal Cauchy problem for nonlinear generalized fractional integro-differential equations
    Kharat, Vinod V.
    Tate, Shivaji
    Reshimkar, Anand Rajshekhar
    [J]. STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2023, 68 (03): : 489 - 506