Exponential dichotomy of difference equations and applications to evolution equations on the half-line

被引:32
|
作者
Huy, NT
Van Minh, N
机构
[1] Ha Noi Univ Technol, Dept Appl Math, Hanoi, Vietnam
[2] Univ Hanoi, Dept Math, Hanoi, Vietnam
关键词
difference equations; discrete evolution family; evolution family; exponential stability; exponential dichotomy;
D O I
10.1016/S0898-1221(01)00155-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a sequence of bounded linear operator {A(n)}(n=0)(infinity) on a Banach space X, we investigate the characterization of exponential dichotomy of the difference equations nu (n+1) = A(n)nu (n). We characterize the exponential dichotomy of difference equations in terms of the existence of solutions to the equations nu (n+1) = A(n)nu (n) + f(n) in l(infinity) space. Then we apply the results to study the exponential dichotomy of evolution families generated by evolution equations. (C) 2001 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:301 / 311
页数:11
相关论文
共 50 条
  • [41] Asymptotics for nonlinear nonlocal equations on a half-line
    Cardiel, Rosa E.
    Kaikina, Elena I.
    Naumkin, Pavel I.
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2006, 8 (02) : 189 - 217
  • [42] STOCHASTIC NONLINEAR PSEUDOPARABOLIC EQUATIONS ON A HALF-LINE
    Juarez-Campos, Beatriz
    Sotelo-Garcia, Norma
    Vazquez-Esquivel, Alexis V.
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2024, 37 (5-6) : 287 - 308
  • [43] New characterizations of exponential dichotomy and exponential stability of linear difference equations
    Ngoc, PHA
    Naito, T
    [J]. JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2005, 11 (10) : 909 - 918
  • [44] Uniform exponential stability for evolution families on the half-line
    Preda, Pedra
    Muresan, Raluca
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2013, 6 (02): : 68 - 73
  • [45] ON THE ARONSZAJN PROPERTY FOR FRACTIONAL NEUTRAL EVOLUTION EQUATIONS WITH INFINITE DELAY ON HALF-LINE
    Nguyen Ngoc Trong
    Le Xuan Truong
    Nguyen Thanh Tung
    [J]. FIXED POINT THEORY, 2020, 21 (02): : 767 - 790
  • [46] Solvability for a class of evolution equations of fractional order with nonlocal conditions on the half-line
    Lv, Zhanmei
    Gong, Yanping
    Chen, Yi
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [47] Solvability for a class of evolution equations of fractional order with nonlocal conditions on the half-line
    Zhanmei Lv
    Yanping Gong
    Yi Chen
    [J]. Advances in Difference Equations, 2017
  • [48] A sufficient condition for exponential dichotomy of parabolic evolution equations
    Schnaubelt, R
    [J]. EVOLUTION EQUATIONS AND THEIR APPLICATIONS IN PHYSICAL AND LIFE SCIENCES, 2001, 215 : 149 - 158
  • [49] Sufficient conditions for exponential stability and dichotomy of evolution equations
    Schnaubelt, R
    [J]. FORUM MATHEMATICUM, 1999, 11 (05) : 543 - 566
  • [50] Exponential dichotomy of systems of linear difference equations with periodic coefficients
    Demidenko, G. V.
    Bondar, A. A.
    [J]. SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (06) : 969 - 980