Treatment of a metabolic liver disease by in vivo genome base editing in adult mice

被引:296
|
作者
Villiger, Lukas [1 ]
Grisch-Chan, Hiu Man [2 ,3 ]
Lindsay, Helen [4 ,5 ]
Ringnalda, Femke [1 ]
Pogliano, Chiara B. [6 ]
Allegri, Gabriella [2 ,3 ]
Fingerhut, Ralph [2 ,3 ,9 ]
Haberle, Johannes [5 ,7 ,8 ]
Matos, Joao [6 ]
Robinson, Mark D. [4 ,5 ]
Thony, Beat [2 ,3 ,8 ]
Schwank, Gerald [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Mol Hlth Sci, Dept Biol, Zurich, Switzerland
[2] Univ Childrens Hosp Zurich, Div Metab, Zurich, Switzerland
[3] Childrens Res Ctr, Zurich, Switzerland
[4] Univ Zurich, SIB Swiss Inst Bioinformat, Zurich, Switzerland
[5] Univ Zurich, Inst Mol Life Sci, Zurich, Switzerland
[6] Swiss Fed Inst Technol, Inst Biochem, Dept Biol, Zurich, Switzerland
[7] Zurich Ctr Integrat Human Physiol, Zurich, Switzerland
[8] Neurosci Ctr Zurich, Zurich, Switzerland
[9] Univ Childrens Hosp, Swiss Newborn Screening Lab, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
HOMOLOGOUS RECOMBINATION; CRYSTAL-STRUCTURE; GENE-THERAPY; STEM-CELLS; GUIDE RNA; PHENYLKETONURIA; SYSTEM; TARGET; DNA; CRISPR-CAS9;
D O I
10.1038/s41591-018-0209-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR-Cas-based genome editing holds great promise for targeting genetic disorders, including inborn errors of hepatocyte metabolism. Precise correction of disease-causing mutations in adult tissues in vivo, however, is challenging. It requires repair of Cas9-induced double-stranded DNA (dsDNA) breaks by homology-directed mechanisms, which are highly inefficient in nondividing cells. Here we corrected the disease phenotype of adult phenylalanine hydroxylase (pah)(enu2) mice, a model for the human autosomal recessive liver disease phenylketonuria (PKU)(1), using recently developed CRISPR-Cas-associated base editors(2-4). These systems enable conversion of C.G to T.A base pairs and vice versa, independent of dsDNA break formation and homology-directed repair (HDR). We engineered and validated an intein-split base editor, which allows splitting of the fusion protein into two parts, thereby circumventing the limited cargo capacity of adeno-associated virus (AAV) vectors. Intravenous injection of AAV-base editor systems resulted in Pah(enu2) gene correction rates that restored physiological blood phenylalanine (L-Phe) levels below 120 mu mol/l [5]. We observed mRNA correction rates up to 63%, restoration of phenylalanine hydroxylase (PAH) enzyme activity, and reversion of the light fur phenotype in Pah(enu2) mice. Our findings suggest that targeting genetic diseases in vivo using AAV-mediated delivery of base-editing agents is feasible, demonstrating potential for therapeutic application.
引用
收藏
页码:1519 / +
页数:9
相关论文
共 50 条
  • [21] Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing
    Susie Suh
    Elliot H. Choi
    Henri Leinonen
    Andrzej T. Foik
    Gregory A. Newby
    Wei-Hsi Yeh
    Zhiqian Dong
    Philip D. Kiser
    David C. Lyon
    David R. Liu
    Krzysztof Palczewski
    Nature Biomedical Engineering, 2021, 5 : 169 - 178
  • [22] Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing ()
    Suh, Susie
    Choi, Elliot H.
    Leinonen, Henri
    Foik, Andrzej T.
    Newby, Gregory A.
    Yeh, Wei-Hsi
    Dong, Zhiqian
    Kiser, Philip D.
    Lyon, David C.
    Liu, David R.
    Palczewski, Krzysztof
    NATURE BIOMEDICAL ENGINEERING, 2020, 4 (11) : 1119 - 1119
  • [23] Restoration of visual function in adult mice with an inherited retinal disease via adenine base editing
    Suh, Susie
    Choi, Elliot H.
    Leinonen, Henri
    Foik, Andrzej T.
    Newby, Gregory A.
    Yeh, Wei-Hsi
    Dong, Zhiqian
    Kiser, Philip D.
    Lyon, David C.
    Liu, David R.
    Palczewski, Krzysztof
    NATURE BIOMEDICAL ENGINEERING, 2021, 5 (02) : 169 - 178
  • [24] Efficient in vivo genome editing prevents hypertrophic cardiomyopathy in mice
    Reichart, Daniel
    Newby, Gregory A.
    Wakimoto, Hiroko
    Lun, Mingyue
    Gorham, Joshua M.
    Curran, Justin J.
    Raguram, Aditya
    DeLaughter, Daniel M.
    Conner, David A.
    Marsiglia, Julia D. C.
    Kohli, Sajeev
    Chmatal, Lukas
    Page, David C.
    Zabaleta, Nerea
    Vandenberghe, Luk
    Liu, David R.
    Seidman, Jonathan G.
    Seidman, Christine
    NATURE MEDICINE, 2023, 29 (02) : 412 - +
  • [25] Disease modeling by efficient genome editing using a near PAM-less base editor in vivo
    Rosello, Marion
    Serafini, Malo
    Mignani, Luca
    Finazzi, Dario
    Giovannangeli, Carine
    Mione, Marina C.
    Concordet, Jean-Paul
    Del Bene, Filippo
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [26] Disease modeling by efficient genome editing using a near PAM-less base editor in vivo
    Marion Rosello
    Malo Serafini
    Luca Mignani
    Dario Finazzi
    Carine Giovannangeli
    Marina C. Mione
    Jean-Paul Concordet
    Filippo Del Bene
    Nature Communications, 13
  • [27] In vivo Base-Editing Corrects Metabolic Defects in Glycogen Storage Disease Type-Ia
    Aratyn-Schaus, Y.
    Arnaoutova, I.
    LeBoeuf, D.
    Fernandez, T. P.
    Packer, M.
    Zhang, L.
    Cheng, L.
    Lung, G.
    Dutko, R.
    Musenge, F.
    Ramanan, K.
    Smith, S. E.
    Decker, J.
    Yang, R.
    Dorkin, J. R.
    Chen, D.
    Ciaramella, G.
    Gregoire, F. M.
    Chou, J. Y.
    HUMAN GENE THERAPY, 2021, 32 (19-20) : A9 - A9
  • [28] Rapid in vivo multiplexed editing (RIME) of the adult mouse liver
    Katsuda, Takeshi
    Cure, Hector
    Sussman, Jonathan
    Simeonov, Kamen P.
    Krapp, Christopher
    Arany, Zoltan
    Grompe, Markus
    Stanger, Ben Z.
    HEPATOLOGY, 2023, 78 (02) : 486 - 502
  • [29] Compact Cje3Cas9 for Efficient In Vivo Genome Editing and Adenine Base Editing
    Chen, Siyu
    Liu, Zhiquan
    Xie, Wanhua
    Yu, Hao
    Lai, Liangxue
    Li, Zhanjun
    CRISPR JOURNAL, 2022, 5 (03): : 472 - 486
  • [30] In vivo base editing rescues Hutchinson–Gilford progeria syndrome in mice
    Luke W. Koblan
    Michael R. Erdos
    Christopher Wilson
    Wayne A. Cabral
    Jonathan M. Levy
    Zheng-Mei Xiong
    Urraca L. Tavarez
    Lindsay M. Davison
    Yantenew G. Gete
    Xiaojing Mao
    Gregory A. Newby
    Sean P. Doherty
    Narisu Narisu
    Quanhu Sheng
    Chad Krilow
    Charles Y. Lin
    Leslie B. Gordon
    Kan Cao
    Francis S. Collins
    Jonathan D. Brown
    David R. Liu
    Nature, 2021, 589 : 608 - 614