The quadrilateral Mindlin plate elements using the spline interpolation bases

被引:2
|
作者
Chen, Juan [1 ]
机构
[1] Dongbei Univ Finance & Econ, Sch Math, Dalian 116025, Peoples R China
基金
中国国家自然科学基金;
关键词
Spline finite element; Quadrilateral thick/thin plate element; Mindlin plate element; Spline interpolation bases; B-net method; THICK;
D O I
10.1016/j.cam.2017.05.045
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By the Mindlin/Reissner plate theory, the displacement omega and rotations theta(x), theta(y) are interpolated by independent functions, for which only C-0 continuity condition is required. The difficulty for constructing interpolation bases on the quadrilateral element without isoparametric transformation can be overcome by using the spline method. In this paper, two sets of spline interpolation bases are adopted to construct two quadrilateral spline Mindlin plate elements (QSMP1 and QSMP2) with 12 degrees of freedom. The spline elements can be applied for both thick and thin plates, and can converge for the very thin case. Numerical examples are discussed to show that the Mindlin plate element combined with the spline interpolation bases can possess good accuracy. (C) 2017 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:68 / 83
页数:16
相关论文
共 50 条
  • [21] The analysis of interpolation precision of quadrilateral elements
    Li, LX
    Kunimatsu, S
    Han, XP
    Xu, SQ
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2004, 41 (01) : 91 - 108
  • [22] Thin plate spline interpolation
    Keller, Wolfgang
    Borkowski, Andrzej
    JOURNAL OF GEODESY, 2019, 93 (09) : 1251 - 1269
  • [23] Thin plate spline interpolation
    Wolfgang Keller
    Andrzej Borkowski
    Journal of Geodesy, 2019, 93 : 1251 - 1269
  • [24] LINKED INTERPOLATION FOR REISSNER-MINDLIN PLATE ELEMENTS .2. A SIMPLE TRIANGLE
    TAYLOR, RL
    AURICCHIO, F
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (18) : 3057 - 3066
  • [25] NONCONFORMING QUADRILATERAL ROTATED ELEMENT FOR REISSNER-MINDLIN PLATE
    Jun Hu Pingbing Ming Zhongci Shi (Institute of Computational Mathematics
    Journal of Computational Mathematics, 2003, (01) : 25 - 32
  • [26] Refined quadrilateral element based on Mindlin/Reissner plate theory
    Wanji, Chen
    Cheung, Y.K.
    International Journal for Numerical Methods in Engineering, 2000, 47 (01) : 605 - 627
  • [27] Refined quadrilateral element based on Mindlin/Reissner plate theory
    Chen, WJ
    Cheung, YK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2000, 47 (1-3) : 605 - 627
  • [28] Study of the construction of wavelet-based plane elastomechanics and mindlin plate elements using B-spline wavelet on the interval
    Xiang, Jia-Wei
    Chen, Xue-Feng
    He, Zheng-Jia
    Jisuan Lixue Xuebao/Chinese Journal of Computational Mechanics, 2007, 24 (06): : 869 - 875
  • [29] FROM KIRCHHOFF TO MINDLIN PLATE ELEMENTS
    AALTO, J
    COMMUNICATIONS IN APPLIED NUMERICAL METHODS, 1988, 4 (02): : 231 - 241
  • [30] Transfinite Thin Plate Spline Interpolation
    Aurelian Bejancu
    Constructive Approximation, 2011, 34 : 237 - 256