Docking optimization, variance and promiscuity for large-scale drug-like chemical space using high performance computing architectures

被引:6
|
作者
Trager, Richard E. [1 ]
Giblock, Paul [3 ]
Soltani, Sherwin [2 ]
Upadhyay, Amit A. [4 ]
Rekapalli, Bhanu [3 ,5 ]
Peterson, Yuri K. [1 ,2 ]
机构
[1] Med Univ South Carolina, Dept Drug Discovery & Biomed Sci, 280 Calhoun St, Charleston, SC 29425 USA
[2] Med Univ South Carolina, South Carolina Ctr Therapeut Discovery & Dev, 280 Calhoun St, Charleston, SC 29425 USA
[3] Univ Tennessee, Dept Elect Engn & Comp Sci, 1520 Middle Dr, Knoxville, TN 37996 USA
[4] Univ Tennessee, Genom Sci & Technol Dept, 1520 Middle Dr, Knoxville, TN 37996 USA
[5] BioTeam Inc, 7 Derosier Dr, Middleton, MA 01949 USA
关键词
MOLECULAR DOCKING; AUTODOCK VINA; FALSE POSITIVES; PROTEIN; DISCOVERY; DESIGN; INHIBITORS; BINDING; REGULATOR; DATABASE;
D O I
10.1016/j.drudis.2016.06.023
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
There is a continuing need to hasten and improve protein-ligand docking to facilitate the next generation of drug discovery. As the drug-like chemical space reaches into the billions of molecules, increasingly powerful computer systems are required to probe, as well as tackle, the software engineering challenges needed to adapt existing docking programs to use next-generation massively parallel processing systems. We demonstrate docking setup using the wrapper code approach to optimize the DOCK program for large-scale computation as well as docking analysis using variance and promiscuity as examples. Wrappers provide faster docking speeds when compared with the naive multi-threading system MPI-DOCK, making future endeavors in large-scale docking more feasible; in addition, eliminating highly variant or promiscuous compounds will make databases more useful.
引用
收藏
页码:1672 / 1680
页数:9
相关论文
共 50 条
  • [21] Towards Portable Large-Scale Image Processing with High-Performance Computing
    Yuankai Huo
    Justin Blaber
    Stephen M. Damon
    Brian D. Boyd
    Shunxing Bao
    Prasanna Parvathaneni
    Camilo Bermudez Noguera
    Shikha Chaganti
    Vishwesh Nath
    Jasmine M. Greer
    Ilwoo Lyu
    William R. French
    Allen T. Newton
    Baxter P. Rogers
    Bennett A. Landman
    Journal of Digital Imaging, 2018, 31 : 304 - 314
  • [22] Accelerating Large-Scale Data Analysis by Offloading to High-Performance Computing Libraries using Alchemist
    Gittens, Alex
    Rothauge, Kai
    Wang, Shusen
    Mahoney, Michael W.
    Gerhardt, Lisa
    Prabhat
    Kottalam, Jey
    Ringenburg, Michael
    Maschhoff, Kristyn
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 293 - 301
  • [23] Queue congestion prediction for large-scale high performance computing systems using a hidden Markov model
    Ju-Won Park
    Min-Woo Kwon
    Taeyoung Hong
    The Journal of Supercomputing, 2022, 78 : 12202 - 12223
  • [24] Transcription network construction for large-scale microarray datasets using a high-performance computing approach
    Zhu, Mengxia
    Wu, Qishi
    BMC GENOMICS, 2008, 9 (Suppl 1)
  • [25] Queue congestion prediction for large-scale high performance computing systems using a hidden Markov model
    Park, Ju-Won
    Kwon, Min-Woo
    Hong, Taeyoung
    JOURNAL OF SUPERCOMPUTING, 2022, 78 (10): : 12202 - 12223
  • [26] Transcription network construction for large-scale microarray datasets using a high-performance computing approach
    Mengxia Michelle Zhu
    Qishi Wu
    BMC Genomics, 9
  • [27] Optimizing large-scale data processing in the digital economy using high-performance computing techniques
    Dong, Fei
    Applied Mathematics and Nonlinear Sciences, 2024, 9 (01)
  • [28] GARLSched: Generative adversarial deep reinforcement learning task scheduling optimization for large-scale high performance computing systems
    Li, Jingbo
    Zhang, Xingjun
    Wei, Jia
    Ji, Zeyu
    Wei, Zheng
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 135 : 259 - 269
  • [29] 100 Million Dimensions Large-Scale Global Optimization Using Distributed GPU Computing
    Cano, Alberto
    Garcia-Martinez, Carlos
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 3566 - 3573
  • [30] Large-Scale High-Resolution Groundwater Modelling using Grid Computing
    Berendrecht, W. L.
    Lourens, A.
    Snepvangers, J. J. J. C.
    Minnema, B.
    MODSIM 2007: INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION: LAND, WATER AND ENVIRONMENTAL MANAGEMENT: INTEGRATED SYSTEMS FOR SUSTAINABILITY, 2007, : 1954 - 1958