Text sparsification via local maxima

被引:0
|
作者
Crescenzi, P
Del Lungo, A
Grossi, R
Lodi, E
Pagli, L
Rossi, G
机构
[1] Univ Florence, Dipartimento Sistemi & Informat, I-50134 Florence, Italy
[2] Univ Siena, Dipartimento Matemat, I-53100 Siena, Italy
[3] Univ Pisa, Dipartimento Informat, I-56125 Pisa, Italy
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper, we investigate a text sparsification technique based on the identification of local maxima. In particular, we first show that looking for an order of the alphabet symbols that minimizes the number of local maxima in a given string is an NP-hard problem. Successively, we describe how the local maxima sparsification technique can be used to filter the access to unstructured texts. Finally, we experimentally show that this approach can be successfully used in order to create a space efficient index for searching a DNA sequence as quickly as a full index.
引用
收藏
页码:290 / 301
页数:12
相关论文
共 50 条
  • [41] ON THE DETERMINISTIC COMPLEXITY OF SEARCHING LOCAL MAXIMA
    ALTHOFER, I
    KOSCHNICK, KU
    [J]. DISCRETE APPLIED MATHEMATICS, 1993, 43 (02) : 111 - 113
  • [42] Matrix sparsification for rank and determinant computations via nested dissection
    Yuster, Raphael
    [J]. PROCEEDINGS OF THE 49TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2008, : 137 - 145
  • [43] Tensor sparsification via a bound on the spectral norm of random tensors
    Nguyen, Nam H.
    Drineas, Petros
    Tran, Trac D.
    [J]. INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2015, 4 (03) : 195 - 229
  • [44] ATOMO: Communication-efficient Learning via Atomic Sparsification
    Wang, Hongyi
    Sievert, Scott
    Charles, Zachary
    Liu, Shengchao
    Wright, Stephen
    Papailiopoulos, Dimitris
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [45] ON THE NUMBER OF LOCAL MAXIMA OF A CONSTRAINED QUADRATIC FORM
    BROOM, M
    CANNINGS, C
    VICKERS, GT
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1993, 443 (1919): : 573 - 584
  • [46] Data perturbation for escaping local maxima in learning
    Elidan, G
    Ninio, M
    Friedman, N
    Schuurmans, D
    [J]. EIGHTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-02)/FOURTEENTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-02), PROCEEDINGS, 2002, : 132 - 139
  • [47] Confidence Regions for Local Maxima of Reconstructed Surfaces
    Sjo, Eva
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2001, 3 (02) : 145 - 159
  • [48] ON FINDING LOCAL MAXIMA OF FUNCTIONS OF A REAL VARIABLE
    RICHARDS, FS
    [J]. BIOMETRIKA, 1967, 54 : 310 - &
  • [49] Confidence Regions for Local Maxima of Reconstructed Surfaces
    Eva Sjö
    [J]. Methodology And Computing In Applied Probability, 2001, 3 : 145 - 159
  • [50] Efficient Distributed Source Coding for Multiple Receivers Via Matrix Sparsification
    Avin, Chen
    Borokhovich, Michael
    Cohen, Asaf
    Lotker, Zvi
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011,