An improved test of the strong equivalence principle with the pulsar in a triple star system

被引:66
|
作者
Voisin, G. [1 ,2 ]
Cognard, I [3 ,4 ]
Freire, P. C. C. [5 ]
Wex, N. [5 ]
Guillemot, L. [3 ,4 ]
Desvignes, G. [5 ,6 ]
Kramer, M. [1 ,5 ]
Theureau, G. [2 ,3 ,4 ]
机构
[1] Univ Manchester, Jodrell Bank Ctr Astrophys, Manchester, Lancs, England
[2] PSL Res Univ, Observ Paris, LUTH, Meudon, France
[3] Univ Orleans, Observ Paris, CNRS INSU, Stn Radioastron Nancay, F-18330 Nancay, France
[4] CNRS, Lab Phys & Chim Environm, 3A Ave Rech Sci, F-45071 Orleans 2, France
[5] Max Planck Inst Radioastron, Hugel 69, D-53121 Bonn, Germany
[6] Univ Paris, Observ Paris, Sorbonne Univ, CNRS,LESIA,Univ PSL, 5 Pl Jules Janssen, F-92195 Meudon, France
基金
欧洲研究理事会;
关键词
gravitation; pulsars: individual: PSR J0337+1715; stars: neutron; radio continuum: stars; RELATIVISTIC CELESTIAL MECHANICS; BINARY-SYSTEMS; FIELD-EQUATIONS; SCALAR THEORIES; TIMING PACKAGE; SOLAR-SYSTEM; GRAVITY; TEMPO2; NOISE; MASS;
D O I
10.1051/0004-6361/202038104
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. The gravitational strong equivalence principle (SEP) is a cornerstone of the general theory of relativity (GR). Hence, testing the validity of SEP is of great importance when confronting GR, or its alternatives, with experimental data. Pulsars that are orbited by white dwarf companions provide an excellent laboratory, where the extreme difference in binding energy between neutron stars and white dwarfs allows for precision tests of the SEP via the technique of radio pulsar timing.Aims. To date, the best limit on the validity of SEP under strong-field conditions was obtained with a unique pulsar in a triple stellar system, PSR J0337+1715. We report here on an improvement of this test using an independent data set acquired over a period of 6 years with the Nancay radio telescope. The improvements arise from a uniformly sampled data set, a theoretical analysis, and a treatment that fixes some short-comings in the previously published results, leading to better precision and reliability of the test.Methods. In contrast to the previously published test, we use a different long-term timing data set, developed a new timing model and an independent numerical integration of the motion of the system, and determined the masses and orbital parameters with a different methodology that treats the parameter Delta, describing a possible strong-field SEP violation, identically to all other parameters.Results. We obtain a violation parameter Delta=(+0.5 +/- 1.8) x 10(-6) at 95% confidence level, which is compatible with and improves upon the previous study by 30%. This result is statistics-limited and avoids limitation by systematics as previously encountered. We find evidence for red noise in the pulsar spin frequency, which is responsible for up to 10% of the reported uncertainty. We use the improved limit on SEP violation to place constraints on a class of well-studied scalar-tensor theories, in particular we find omega(BD)> 140 000 for the Brans-Dicke parameter. The conservative limits presented here fully take into account current uncertainties in the equation for state of neutron-star matter.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Pulsar motions from neutrino oscillations induced by a violation of the equivalence principle
    Barkovich, M
    Casini, H
    D'Olivo, JC
    Montemayor, R
    PHYSICS LETTERS B, 2001, 506 (1-2) : 20 - 26
  • [43] A millisecond pulsar in a stellar triple system
    Ransom, S. M.
    Stairs, I. H.
    Archibald, A. M.
    Hessels, J. W. T.
    Kaplan, D. L.
    van Kerkwijk, M. H.
    Boyles, J.
    Deller, A. T.
    Chatterjee, S.
    Schechtman-Rook, A.
    Berndsen, A.
    Lynch, R. S.
    Lorimer, D. R.
    Karako-Argaman, C.
    Kaspi, V. M.
    Kondratiev, V. I.
    McLaughlin, M. A.
    van Leeuwen, J.
    Rosen, R.
    Roberts, M. S. E.
    Stovall, K.
    NATURE, 2014, 505 (7484) : 520 - +
  • [44] A millisecond pulsar in a stellar triple system
    S. M. Ransom
    I. H. Stairs
    A. M. Archibald
    J. W. T. Hessels
    D. L. Kaplan
    M. H. van Kerkwijk
    J. Boyles
    A. T. Deller
    S. Chatterjee
    A. Schechtman-Rook
    A. Berndsen
    R. S. Lynch
    D. R. Lorimer
    C. Karako-Argaman
    V. M. Kaspi
    V. I. Kondratiev
    M. A. McLaughlin
    J. van Leeuwen
    R. Rosen
    M. S. E. Roberts
    K. Stovall
    Nature, 2014, 505 : 520 - 524
  • [45] EOTVOS EXPERIMENTS, LUNAR RANGING AND THE STRONG EQUIVALENCE PRINCIPLE
    ADELBERGER, EG
    HECKEL, BR
    SMITH, G
    SU, Y
    SWANSON, HE
    NATURE, 1990, 347 (6290) : 261 - 263
  • [46] The strong equivalence principle from a gravitational gauge structure
    Gerard, J-M
    CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (07) : 1867 - 1877
  • [47] A strong duality principle for equivalence couplings and total variation
    Jaffe, Adam Quinn
    ELECTRONIC JOURNAL OF PROBABILITY, 2023, 28
  • [48] Result of the MICROSCOPE weak equivalence principle test
    Touboul, Pierre
    Metris, Gilles
    Rodrigues, Manuel
    Berge, Joel
    Robert, Alain
    Baghi, Quentin
    Andre, Yves
    Bedouet, Judicael
    Boulanger, Damien
    Bremer, Stefanie
    Carle, Patrice
    Chhun, Ratana
    Christophe, Bruno
    Cipolla, Valerio
    Damour, Thibault
    Danto, Pascale
    Demange, Louis
    Dittus, Hansjoerg
    Dhuicque, Oceane
    Fayet, Pierre
    Foulon, Bernard
    Guidotti, Pierre-Yves
    Hagedorn, Daniel
    Hardy, Emilie
    Huynh, Phuong-Anh
    Kayser, Patrick
    Lala, Stephanie
    Laemmerzahl, Claus
    Lebat, Vincent
    Liorzou, Francoise
    List, Meike
    Loeffler, Frank
    Panet, Isabelle
    Pernot-Borras, Martin
    Perraud, Laurent
    Pires, Sandrine
    Pouilloux, Benjamin
    Prieur, Pascal
    Rebray, Alexandre
    Reynaud, Serge
    Rievers, Benny
    Selig, Hanns
    Serron, Laura
    Sumner, Timothy
    Tanguy, Nicolas
    Torresi, Patrizia
    Visser, Pieter
    CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (20)
  • [49] Test of the Equivalence Principle with Optical readout in space
    Luo, Jun
    Gao, Fen
    Bai, Yan-Zheng
    Shao, Cheng-Gang
    Zhou, Ze-Bing
    INTERNATIONAL JOURNAL OF MICROGRAVITY SCIENCE AND APPLICATION, 2008, 25 (03):
  • [50] ON THE EXPERIMENTAL TEST OF THE WEAK EQUIVALENCE PRINCIPLE FOR A NEUTRON
    POKOTILOVSKII, YN
    PHYSICS OF ATOMIC NUCLEI, 1994, 57 (03) : 390 - 394