Brassinosteroids induced drought resistance of contrasting drought-responsive genotypes of maize at physiological and transcriptomic levels

被引:11
|
作者
Gillani, Syed Faheem Anjum [1 ]
Zhuang, Zelong [1 ]
Rasheed, Adnan [2 ,3 ]
Ul Haq, Inzamam [4 ]
Abbasi, Asim [5 ]
Ahmed, Shakil [6 ]
Wang, Yinxia [1 ]
Khan, Muhammad Tajammal [7 ]
Sardar, Rehana [6 ]
Peng, Yunling [1 ]
机构
[1] Coll Agron, Gansu Prov Key Lab Arid Land Crop Sci, Lanzhou, Peoples R China
[2] Hunan Agr Univ, Coll Agron, Changsha, Peoples R China
[3] Jilin Changfa Modern Agr Sci & Technol Grp co Ltd, Crop Breeding Dept, Changchun, Peoples R China
[4] Gansu Agr Univ, Coll Plant Protect, Lanzhou, Peoples R China
[5] Kohsar Univ, Dept Environm Sci, Murree, Pakistan
[6] Univ Punjab, Inst Bot, Lahore, Pakistan
[7] Univ Educ, Dept Bot, Div Sci & Technol, Lahore, Pakistan
来源
关键词
GO analysis; KEGG; metabolism; transcriptome; zea mays; SALT-STRESS TOLERANCE; GROWTH; PLANTS; ROOTS; GENES;
D O I
10.3389/fpls.2022.961680
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The present study investigated the brassinosteroid-induced drought resistance of contrasting drought-responsive maize genotypes at physiological and transcriptomic levels. The brassinosteroid (BR) contents along with different morphology characteristics, viz., plant height (PH), shoot dry weight (SDW), root dry weight (RDW), number of leaves (NL), the specific mass of the fourth leaf, and antioxidant activities, were investigated in two maize lines that differed in their degree of drought tolerance. In response to either control, drought, or brassinosteroid treatments, the KEGG enrichment analysis showed that plant hormonal signal transduction and starch and sucrose metabolism were augmented in both lines. In contrast, the phenylpropanoid biosynthesis was augmented in lines H21L0R1 and 478. Our results demonstrate drought-responsive molecular mechanisms and provide valuable information regarding candidate gene resources for drought improvement in maize crop. The differences observed for BR content among the maize lines were correlated with their degree of drought tolerance, as the highly tolerant genotype showed higher BR content under drought stress.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Comparative analysis of drought responsive transcriptome in Brassica napus genotypes with contrasting drought tolerance under different potassium levels
    Bo Zhu
    Huaxiang Xu
    Xi Guo
    Junxing Lu
    Xingyu Liu
    Tao Zhang
    Euphytica, 2023, 219
  • [22] Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting
    Prince, Silvas J.
    Joshi, Trupti
    Mutava, Raymond N.
    Syed, Naeem
    Vitor, Maldonado dos Santos Joao
    Patil, Gunvant
    Song, Li
    Wang, JiaoJiao
    Lin, Li
    Chen, Wei
    Shannon, J. Grover
    Valliyodan, Babu
    Xu, Dong
    Nguyen, Henry T.
    PLANT SCIENCE, 2015, 240 : 65 - 78
  • [23] Drought responsive transcriptome profiling in roots of contrasting rice genotypes
    Raveendran M.
    Rahman H.
    Manoharan M.
    Ramanathan V.
    Nallathambi J.
    Indian Journal of Plant Physiology, 2018, 23 (3): : 393 - 407
  • [24] Drought-tolerant and drought-sensitive genotypes of maize (Zea mays L.) differ in contents of endogenous brassinosteroids and their drought-induced changes
    Tumova, Lenka
    Tarkowska, Danuse
    Rehorova, Katerina
    Markova, Hana
    Kocova, Marie
    Rothova, Olga
    Cecetka, Petr
    Hola, Dana
    PLOS ONE, 2018, 13 (05):
  • [25] Physiological and Transcriptomic Characterization of Rice Genotypes under Drought Stress
    Zhu, Qian
    Hassan, Muhammad Ahmad
    Li, Yiru
    Fang, Wuyun
    Wu, Jingde
    Wang, Shimei
    AGRONOMY-BASEL, 2024, 14 (10):
  • [26] Identification, Characterization, and Functional Validation of Drought-responsive MicroRNAs in Subtropical Maize Inbreds
    Aravind, Jayaraman
    Rinku, Sharma
    Pooja, Banduni
    Shikha, Mittal
    Kaliyugam, Shiriga
    Mallikarjuna, Mallana Gowdra
    Kumar, Arun
    Rao, Atmakuri Ramakrishna
    Nepolean, Thirunavukkarasu
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [27] Photosynthetic and physiological responses to drought of Jerusalem artichoke genotypes differing in drought resistance
    Puangbut, Darunee
    Jogloy, Sanun
    Vorasoot, Nimitr
    Songsri, Patcharin
    Agricultural Water Management, 2022, 259
  • [28] Photosynthetic and physiological responses to drought of Jerusalem artichoke genotypes differing in drought resistance
    Puangbut, Darunee
    Jogloy, Sanun
    Vorasoot, Nimitr
    Songsri, Patcharin
    AGRICULTURAL WATER MANAGEMENT, 2022, 259
  • [29] Identification of drought-responsive compounds in potato through a combined transcriptomic and targeted metabolite approach
    Evers, Daniele
    Lefevre, Isabelle
    Legay, Sylvain
    Lamoureux, Didier
    Hausman, Jean-Francois
    Rosales, Raymundo Oscar Gutierrez
    Marca, Luz Rosalina Tincopa
    Hoffmann, Lucien
    Bonierbale, Merideth
    Schafleitner, Roland
    JOURNAL OF EXPERIMENTAL BOTANY, 2010, 61 (09) : 2327 - 2343
  • [30] Identification and Functional Analysis of Drought-Responsive Long Noncoding RNAs in Maize Roots
    Tang, Xin
    Li, Qimeng
    Feng, Xiaoju
    Yang, Bo
    Zhong, Xiu
    Zhou, Yang
    Wang, Qi
    Mao, Yan
    Xie, Wubin
    Liu, Tianhong
    Tang, Qi
    Guo, Wei
    Wu, Fengkai
    Feng, Xuanjun
    Wang, Qingjun
    Lu, Yanli
    Xu, Jie
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (20)