WELL PRODUCTIVITY INDEX FOR COMPRESSIBLE FLUIDS AND GASES

被引:2
|
作者
Aulisa, Eugenio [1 ]
Bloshanskaya, Lidia [1 ,2 ]
Ibragimov, Akif [1 ,2 ]
机构
[1] Texas Tech Univ, Dept Math & Stat Broadway & Boston, Lubbock, TX 79409 USA
[2] SUNY Coll New Paltz, Dept Math, 1 Hawk Dr, New Paltz, NY 12561 USA
来源
关键词
Nonlinear flow; Forchheimer flow; gas flow; compressible fluid; productivity index; CONTINUOUS DEPENDENCE; FORCHHEIMER; BRINKMAN; CONVERGENCE; MODELS; DARCY; FLOWS;
D O I
10.3934/eect.2016.5.1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We discuss the notion of the well productivity index (PI) for the generalized Forchheimer flow of fluid through porous media. The PI characterizes the well capacity with respect to drainage area of the well and in general is time dependent. In case of the slightly compressible fluid the PI stabilizes in time to the specific value, determined by the so-called pseudo steady state solution, [5, 3, 4]. Here we generalize our results from [1] in case of arbitrary order of the nonlinearity of the flow. In case of the compressible gas flow the mathematical model of the PI is studied for the first time. In contrast to slightly compressible fluid the PI stays "almost" constant for a long period of time, but then it blows up as time approaches the certain critical value. This value depends on the initial data (initial reserves) of the reservoir. The "greater" are the initial reserves, the larger is this critical value. We present numerical and theoretical results for the time asymptotic of the PI and its stability with respect to the initial data.
引用
收藏
页码:1 / 36
页数:36
相关论文
共 50 条
  • [31] TRANSIENT PROBLEMS IN COMPRESSIBLE FLUIDS
    Barbera, Elvira
    Rizzo, Alessandra
    ATTI ACCADEMIA PELORITANA DEI PERICOLANTI-CLASSE DI SCIENZE FISICHE MATEMATICHE E NATURALI, 2022, 100 (02):
  • [32] Lagrangian averaging for compressible fluids
    Bhat, HS
    Fetecau, RC
    Marsden, JE
    Mohseni, K
    West, M
    MULTISCALE MODELING & SIMULATION, 2005, 3 (04): : 818 - 837
  • [33] On the Capillary Problem for Compressible Fluids
    Robert Finn
    Garving K. Luli
    Journal of Mathematical Fluid Mechanics, 2007, 9 : 87 - 103
  • [34] A particle model of compressible fluids
    Harry Yserentant
    Numerische Mathematik, 1997, 76 : 111 - 142
  • [35] DISSIPATION FUNCTION OF COMPRESSIBLE FLUIDS
    HOFF Lu
    中国物理学报, 1951, (02) : 145 - 149
  • [36] Compressible fluids and active potentials
    Constantin, Peter
    Drivas, Theodore D.
    Nguyen, Huy Q.
    Pasqualotto, Federico
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2020, 37 (01): : 145 - 180
  • [37] Capillary waves of compressible fluids
    Falk, Kerstin
    Mecke, Klaus
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (18)
  • [38] MEASUREMENT OF COMPRESSIBLE FLUIDS.
    Evans, Howard J.
    1600, (47):
  • [39] Compressible fluids in a capillary tube
    Athanassenas, Maria
    Finn, Robert
    PACIFIC JOURNAL OF MATHEMATICS, 2006, 224 (02) : 201 - 229
  • [40] Remark on the Local Well-Posedness of Compressible Non-Newtonian Fluids with Initial Vacuum
    Al Baba, Hind
    Al Taki, Bilal
    Hussein, Amru
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2024, 26 (04)