Catalyst layer design with inhomogeneous distribution of platinum and ionomer optimal for proton exchange membrane fuel cell cold-start

被引:19
|
作者
Yang, Liu [1 ]
Fu, Kaihao [1 ]
Jin, Xisheng [1 ]
Wang, Shiyao [1 ]
Gan, Quanquan [2 ,3 ]
Zhang, Qi [1 ]
Li, Ping [1 ]
Cao, Chenxi [4 ,5 ]
机构
[1] East China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[2] Tsinghua Univ, State Key Lab Automot Safety & Energy, Beijing 100084, Peoples R China
[3] Shanghai Shen Li High Tech Co Ltd, Ind Dev Zone, Yuandong Rd, Shanghai 201401, Peoples R China
[4] East China Univ Sci & Technol, Key Lab Smart Mfg Energy Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
[5] East China Univ Sci & Technol, Minist Educ, Engn Res Ctr Proc Syst Engn, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Proton exchange membrane fuel cell; Mathematical modeling; Cold start; Catalyst layer; Inhomogeneous distribution; Platinum and ionomer loading; THEORETICAL-ANALYSIS; CURRENT-DENSITY; CATHODE; PERFORMANCE; ELECTRODE; PEMFC; OPTIMIZATION; SIMULATION; OPERATION; RATIO;
D O I
10.1016/j.ces.2022.118132
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Performance of proton exchange membrane fuel cells under subfreezing environments is restrained by the properties of electrode materials, for instance, the platinum and ionomer loadings. Herein, we pro-pose an optimization strategy for the cold-start performance based on comprehensive multiphysics sim-ulation, employing a functional inhomogeneous cathode catalyst layer (CL) with appropriate platinum and ionomer loading gradients. Numerical analysis reveals the interaction modes between spatial evolu-tion of ice deposition and local species transport in CLs during cold start. As a result, increased loadings towards the membrane side of the CL and near the cathode outlet improve the cold-start performance by promoting the ice uniformity and uplifting the critical ice fractions at the failure time. A practically rel-evant, multilayer graded cathode CL has been optimally designed, which proves to significantly expand the feasible operation domains of cold start while benefiting the nominal working cell performance com-pared with homogeneous CLs.(c) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Comparison of self cold start strategies of automotive Proton Exchange Membrane Fuel Cell
    Amamou, A.
    Boulon, L.
    Kelouwani, S.
    2018 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY (ICIT), 2018, : 904 - 908
  • [42] Investigation of mechanical vibration effect on proton exchange membrane fuel cell cold start
    Xie, Xu
    Zhu, Mengqian
    Wu, Siyuan
    Tongsh, Chasen
    Sun, Xiaoyan
    Wang, Bowen
    Park, Jae Wan
    Jiao, Kui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2020, 45 (28) : 14528 - 14538
  • [43] Effects of platinum loading on the performance of proton exchange membrane fuel cells with high ionomer content in catalyst layers
    Ahn, Sang Hyun
    Jeon, Sunyeol
    Park, Hee-Young
    Kim, Soo-Kil
    Kim, Hyoung-Juhn
    Cho, EunAe
    Henkensmeier, Dirk
    Yoo, Sung Jong
    Nam, Suk Woo
    Lim, Tae-Hoon
    Jang, Jong Hyun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (23) : 9826 - 9834
  • [44] Nanofiber Cathode Catalyst Layer Model for a Proton Exchange Membrane Fuel Cell
    Dever, Dennis O.
    Cairncross, Richard A.
    Elabd, Yossef A.
    JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2014, 11 (04):
  • [45] The investigation of resin degradation in catalyst layer of proton exchange membrane fuel cell
    Xiao, Shaohua
    Zhang, Huamin
    JOURNAL OF POWER SOURCES, 2014, 246 : 858 - 861
  • [46] Non-platinum cathode catalyst layer composition for single membrane electrode assembly proton exchange membrane fuel cell
    Olson, Tim S.
    Chapman, Kate
    Atanassov, Plamen
    JOURNAL OF POWER SOURCES, 2008, 183 (02) : 557 - 563
  • [47] Catalyst gradient for cathode active layer of proton exchange membrane fuel cell
    Antoine, O
    Bultel, Y
    Ozil, P
    Durand, R
    ELECTROCHIMICA ACTA, 2000, 45 (27) : 4493 - 4500
  • [48] Preparation, Performance and Challenges of Catalyst Layer for Proton Exchange Membrane Fuel Cell
    Xie, Meng
    Chu, Tiankuo
    Wang, Tiantian
    Wan, Kechuang
    Yang, Daijun
    Li, Bing
    Ming, Pingwen
    Zhang, Cunman
    MEMBRANES, 2021, 11 (11)
  • [49] Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell
    Marr, C
    Li, XG
    JOURNAL OF POWER SOURCES, 1999, 77 (01) : 17 - 27
  • [50] Effect of membrane electrode assembly design on the cold start process of proton exchange membrane fuel cells
    Yang, Zirong
    Du, Qing
    Huo, Sen
    Jiao, Kui
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (40) : 25372 - 25387