Transvection and differential invariants of parametrized curves

被引:0
|
作者
Beffa, G. Mari [1 ]
Sanders, Jan A. [2 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Vrije Univ Amsterdam, Dept Math, NL-1081 HV Amsterdam, Netherlands
关键词
transvectant; differential invariants; curves; affine manifold; symmetric manifold;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe an sl(2) representation in the space of differential invariants of parametrized curves in homogeneous spaces. The representation is described by three operators, one of them being the total derivative D. We use this representation to find a basis for the space of differential invariants of curves in a complement of the image of D, and so generated by transvection. These are natural representatives of first cohomology classes in the invariant bicomplex. We describe algorithms to find these basis and study most well-known geometries.
引用
收藏
页码:93 / 123
页数:31
相关论文
共 50 条
  • [41] On differential invariants
    Shaw, JB
    AMERICAN JOURNAL OF MATHEMATICS, 1913, 35 : 395 - 406
  • [42] Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry
    Khadjiev, Djavvat
    Oren, Idris
    Peksen, Omer
    TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (01) : 80 - 94
  • [43] LOCAL SYMPLECTIC INVARIANTS FOR CURVES
    Kamran, Niky
    Olver, Peter
    Tenenblat, Keti
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2009, 11 (02) : 165 - 183
  • [44] Bigraded invariants for real curves
    Dos Santos, Pedro F.
    Lima-Filho, Paulo
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2014, 14 (05): : 2809 - 2852
  • [45] On invariants of elliptic curves on average
    Akbary, Amir
    Felix, Adam Tyler
    ACTA ARITHMETICA, 2015, 168 (01) : 31 - 70
  • [46] Motivic Serre invariants of curves
    Johannes Nicaise
    Julien Sebag
    manuscripta mathematica, 2007, 123 : 105 - 132
  • [47] The odderon and invariants of elliptic curves
    Janik, RA
    ACTA PHYSICA POLONICA B, 1996, 27 (06): : 1275 - 1286
  • [48] On the Alexander invariants of trigonal curves
    Melih Üçer
    Revista Matemática Complutense, 2022, 35 : 265 - 286
  • [49] Principal invariants of Jacobi curves
    Agrachev, A
    Zelenko, I
    NONLINEAR CONTROL IN THE YEAR 2000, VOL 1, 2000, 258 : 9 - 21
  • [50] Geometric invariants of fanning curves
    Paiva, J. C. Alvarez
    Duran, Carlos E.
    ADVANCES IN APPLIED MATHEMATICS, 2009, 42 (03) : 290 - 312