Memory effect in MOS structures containing amorphous or crystalline silicon nanoparticles

被引:1
|
作者
Nedev, N. [1 ,2 ]
Nesheva, D. [2 ]
Manolov, E. [2 ]
Brueggemann, R. [3 ]
Meier, S. [3 ]
Levi, Z. [2 ]
机构
[1] Univ Autonoma Baja California, Inst Ingn, Benito Juarez Blvd S-N, Mexicali 21280, Baja California, Mexico
[2] Bulgarian Acad Sci, Inst Solid State Phys, Sofia 1784, Bulgaria
[3] Carl Von Ossietzky Univ Oldenburg, Inst Phys, D-26111 Oldenburg, Germany
关键词
D O I
10.1109/ICMEL.2008.4559237
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Metal-Oxide-Silicon structures are fabricated by sequential physical vapor deposition of SiOx (x=1.15) and RF sputtering Of SiO2 on n-type crystalline silicon. High temperature annealing in an inert gas ambient at 700 degrees C or 1000 degrees C is used to grow amorphous or crystalline silicon nanoparticles in the SiOx layer. The nanoparticle formation is proven by infrared transmission and Raman scattering measurements. The annealing is also used to form a dielectric layer with tunneling thickness at the silicon wafer/insulator interface. High frequency C-V measurements show that both types of structures can be charged negatively/positively by applying a positive/negative voltage on the gate. The structures with amorphous silicon nanoparticles show lower defect density at the interface between the wafer and the tunnel silicon oxide, lack of fluctuations of the C-V characteristics over the wafer and better reliability when compared to the nanocrystal ones. The most essential advantage is their better retention characteristics; upon negative charging; they retain about 60% of the negative charge trapped in the nanoparticles after 96 h while the structures with nanocrystals retain about 50% after 22 hours.
引用
收藏
页码:117 / +
页数:2
相关论文
共 50 条
  • [21] Temperature dependency of the intrinsic carrier density of hydrogenated amorphous silicon in MOS structures
    Fahrner, WR
    Grabosch, G
    Borchert, D
    Chan, Y
    Kwong, S
    Man, K
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 1999, 3 (05) : 245 - 250
  • [22] Temperature effect on bonding structures of amorphous carbon containing more than 30at.% silicon
    Ong, Soon-Eng
    Zhang, Sam
    Du, Hejun
    Tan, Gladys
    DIAMOND AND RELATED MATERIALS, 2007, 16 (10) : 1823 - 1827
  • [23] Charging/discharging kinetics in LPCVD silicon nanocrystal MOS memory structures
    Turchanikov, V.
    Nazarov, A.
    Lysenko, V.
    Tsoi, E.
    Salonidou, A.
    Nassiopoulou, A. G.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 38 (1-2): : 89 - 93
  • [24] OXIDATION OF AMORPHOUS AND CRYSTALLINE SILICON
    SZEKERES, A
    DANESH, P
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 1995, 187 : 45 - 48
  • [25] Hydrogen in crystalline and amorphous silicon
    Johnson, N.M.
    Journal of Non-Crystalline Solids, 1991, 137-38 (pt 1) : 11 - 16
  • [26] THE CRYSTALLINE TO AMORPHOUS TRANSFORMATION IN SILICON
    WASHBURN, J
    MURTY, CS
    SADANA, D
    BYRNE, P
    GRONSKY, R
    CHEUNG, N
    KILAAS, R
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, 1983, 209 (MAY): : 345 - 350
  • [27] Deuterium in crystalline and amorphous silicon
    Borzi, R
    Ma, H
    Fedders, PA
    Leopold, DJ
    Norberg, RE
    AMORPHOUS AND MICROCRYSTALLINE SILICON TECHNOLOGY - 1997, 1997, 467 : 117 - 122
  • [28] LIGHT-EMISSION FROM CRYSTALLINE SILICON AND AMORPHOUS-SILICON OXIDE (SIOX) NANOPARTICLES
    MILEWSKI, PD
    LICHTENWALNER, DJ
    MEHTA, P
    KINGON, AI
    ZHANG, D
    KOLBAS, RM
    JOURNAL OF ELECTRONIC MATERIALS, 1994, 23 (01) : 57 - 62
  • [29] The sign of the Hall effect in hydrogenated amorphous and disordered crystalline silicon
    Nebel, CE
    Rother, M
    Stutzmann, M
    Summonte, C
    Heintze, M
    PHILOSOPHICAL MAGAZINE LETTERS, 1996, 74 (06) : 455 - 463
  • [30] A comparative study of MOS memory structures that contain platinum or gold nanoparticles
    Sargentis, Ch.
    Giannakopoulos, K.
    Travlos, A.
    Tsamakis, D.
    2007 INTERNATIONAL SEMICONDUCTOR DEVICE RESEARCH SYMPOSIUM, VOLS 1 AND 2, 2007, : 179 - +