SQUARING WEIGHTED LOW-RANK SUBSPACE CLUSTERING FOR HYPERSPECTRAL IMAGE BAND SELECTION

被引:10
|
作者
Zhai, Han
Zhang, Hongyan [1 ]
Zhang, Liangpei
Li, Pingxiang
机构
[1] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & R, Wuhan, Hubei, Peoples R China
关键词
hyperspectral image; band selection; low-rank subspace clustering;
D O I
10.1109/IGARSS.2016.7729628
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Band selection is an effective approach to mitigate the "Hughes phenomenon" of hyperspectral image (HSI) classification. In this paper, a novel squaring weighted low-rank subspace clustering band selection (SWLRSC) algorithm is proposed for hyperspectral imagery. The SWLRSC method can effectively capture the global structure information of the HSI band set by constructing a strongly connected adjacency matrix with accurate representation coefficients, and can adaptively determine an appropriate size for the selected band subset. The experimental results indicate that the proposed SWLRSC algorithm outperforms the state-of-the-art band selection algorithms.
引用
收藏
页码:2434 / 2437
页数:4
相关论文
共 50 条
  • [1] Laplacian-Regularized Low-Rank Subspace Clustering for Hyperspectral Image Band Selection
    Zhai, Han
    Zhang, Hongyan
    Zhang, Liangpei
    Li, Pingxiang
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2019, 57 (03): : 1723 - 1740
  • [2] Fast and Latent Low-Rank Subspace Clustering for Hyperspectral Band Selection
    Sun, Weiwei
    Peng, Jiangtao
    Yang, Gang
    Du, Qian
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (06): : 3906 - 3915
  • [3] Soft hypergraph regularized weighted low rank subspace clustering for hyperspectral image band selection
    Xu, Jinhuan
    Yan, Guang
    Zhao, Xingwen
    Ai, Mingshun
    Li, Xiangdong
    Liu, Pengfei
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (14) : 5348 - 5371
  • [4] Sample Latent Feature-Associated Low-Rank Subspace Clustering for Hyperspectral Band Selection
    Guo, Yujie
    Zhao, Xin
    Sun, Xudong
    Zhang, Jiahua
    Shang, Xiaodi
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 14050 - 14063
  • [5] Deep Low-Rank Graph Convolutional Subspace Clustering for Hyperspectral Image
    Han, Tianhao
    Niu, Sijie
    Gao, Xizhan
    Yu, Wenyue
    Cui, Na
    Dong, Jiwen
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Unified Low-Rank Subspace Clustering with Dynamic Hypergraph for Hyperspectral Image
    Xu, Jinhuan
    Xiao, Liang
    Yang, Jingxiang
    [J]. REMOTE SENSING, 2021, 13 (07)
  • [7] Hyperspectral Image Classification with Low-Rank Subspace and Sparse Representation
    Sumarsono, Alex
    Du, Qian
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2864 - 2867
  • [8] Deep Low-Rank Subspace Clustering
    Kheirandishfard, Mohsen
    Zohrizadeh, Fariba
    Kamangar, Farhad
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, : 3767 - 3772
  • [9] Weighted Low-Rank Tensor Recovery for Hyperspectral Image Restoration
    Chang, Yi
    Yan, Luxin
    Zhao, Xi-Le
    Fang, Houzhang
    Zhang, Zhijun
    Zhong, Sheng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (11) : 4558 - 4572
  • [10] Parallel Multi-view Low-rank and Sparse Subspace Clustering for Unsupervised Hyperspectral Image Classification
    Tian, Long
    Du, Qian
    [J]. 2018 ASIA-PACIFIC SIGNAL AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND CONFERENCE (APSIPA ASC), 2018, : 618 - 621