Parallel Multi-view Low-rank and Sparse Subspace Clustering for Unsupervised Hyperspectral Image Classification

被引:0
|
作者
Tian, Long [1 ]
Du, Qian [1 ]
机构
[1] Mississippi State Univ, Mississippi State, MS 39762 USA
基金
中国国家自然科学基金;
关键词
REPRESENTATION;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, parallel multi-view low-rank sparse subspace clustering (MLRSSC) is investigated for unsupervised classification of remotely sensed hyperspectral imagery. A 3-dimensional (3D) hyperspectral image contains abundant spectral and spatial information. Such diverse information can be considered as multiple views during the clustering process. In this paper, multiple spectral views are generated from correlated spectral band groups, a decorrelated and denoised view from principal components, and spatial views from morphological features. To make such a computational expensive clustering technique applicable to large-scale remote sensing images, parallel MLRSSC is implemented to non-overlapping 3D blocks. Experimental results demonstrate that the performance of the MLRSSC is better than other subspace clustering based algorithms.
引用
收藏
页码:618 / 621
页数:4
相关论文
共 50 条
  • [1] Multi-view low-rank sparse subspace clustering
    Brbic, Maria
    Kopriva, Ivica
    [J]. PATTERN RECOGNITION, 2018, 73 : 247 - 258
  • [2] Latent Low-Rank Sparse Multi-view Subspace Clustering
    Zhang, Zhuohan
    Cao, Rongwei
    Li, Chen
    Cheng, Shiqing
    [J]. Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2020, 33 (04): : 344 - 352
  • [3] LOW-RANK AND SPARSE TENSOR REPRESENTATION FOR MULTI-VIEW SUBSPACE CLUSTERING
    Wang, Shuqin
    Chen, Yongyong
    Cen, Yigang
    Zhang, Linna
    Voronin, Viacheslav
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 1534 - 1538
  • [4] Nonconvex low-rank and sparse tensor representation for multi-view subspace clustering
    Shuqin Wang
    Yongyong Chen
    Yigang Cen
    Linna Zhang
    Hengyou Wang
    Viacheslav Voronin
    [J]. Applied Intelligence, 2022, 52 : 14651 - 14664
  • [5] Nonconvex low-rank and sparse tensor representation for multi-view subspace clustering
    Wang, Shuqin
    Chen, Yongyong
    Cen, Yigang
    Zhang, Linna
    Wang, Hengyou
    Voronin, Viacheslav
    [J]. APPLIED INTELLIGENCE, 2022, 52 (13) : 14651 - 14664
  • [6] Facilitated low-rank multi-view subspace clustering
    Zhang, Guang-Yu
    Huang, Dong
    Wang, Chang-Dong
    [J]. KNOWLEDGE-BASED SYSTEMS, 2023, 260
  • [7] Deep Low-Rank Multi-View Subspace Clustering
    Yan, Jintao
    Li, Zhongyu
    Tang, Qifan
    Zhou, Zhihao
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2021, 55 (11): : 125 - 135
  • [8] Unsupervised radar signal recognition based on multi-block - Multi-view Low-Rank Sparse Subspace Clustering
    Liu, Lutao
    Xu, Shuai
    [J]. IET RADAR SONAR AND NAVIGATION, 2022, 16 (03): : 542 - 551
  • [9] Hyperspectral Image Classification with Low-Rank Subspace and Sparse Representation
    Sumarsono, Alex
    Du, Qian
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 2864 - 2867
  • [10] INCOMPLETE MULTI-VIEW SUBSPACE CLUSTERING WITH LOW-RANK TENSOR
    Liu, Jianlun
    Teng, Shaohua
    Zhang, Wei
    Fang, Xiaozhao
    Fei, Lunke
    Zhang, Zhuxiu
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 3180 - 3184