In Situ Ratiometric Quantitative Tracing of Intracellular Leucine Aminopeptidase Activity via an Activatable Near-Infrared Fluorescent. Probe

被引:85
|
作者
Gu, Kaizhi [1 ,2 ]
Liu, Yajing [3 ]
Guo, Zhiqian [1 ,2 ,4 ]
Lian, Cheng [1 ,2 ]
Yan, Chenxu [1 ,2 ]
Shi, Ping [3 ]
Tian, He [1 ,2 ]
Zhu, Wei-Hong [1 ,2 ]
机构
[1] East China Univ Sci & Technol, Key Lab Adv Mat, Sch Chem & Mol Engn, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Inst Fine Chem, Sch Chem & Mol Engn, Shanghai Key Lab Funct Mat Chem,Collaborat Innova, Shanghai 200237, Peoples R China
[3] East China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai 200237, Peoples R China
[4] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116024, Peoples R China
关键词
near-infrared; fluorescent probe; ratiometric; in situ; leucine aminopeptidase; LIVING CELLS; RATIONAL DESIGN; RECENT PROGRESS; FAR-RED; VIVO; GLUTATHIONE; TRACKING; DICYANOMETHYLENE-4H-PYRAN; CHEMOSENSORS; NANOPROBE;
D O I
10.1021/acsami.6b10238
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Leucine aminopeptidase (LAP), one of the important proteolytic enzymes, is intertwined with the progress of many pathological disorders as a well-defined biomarker. To explore fluorescent aminopeptidase probe for quantitative detection of LAP distribution and dynamic changes, herein we report a LAP-targeting near-infrared (NIR) fluorescent probe (DCM-Leu) for ratiometric quantitative trapping of LAP activity in different kinds of living cells. DCM-Leu is composed of a NIR-emitting fluorophore (DCM) as a reporter and L-leucine as a triggered moiety, which are linked together by an amide bond specific for LAP cleavage. High contrast on the ratiometric NIR fluorescence signal can be achieved in response to LAP activity, thus enabling quantification of endogenous LAP with "build-in calibration" as well as minimal background interference. Its ratiometric NIR signal can be blocked in a dose-dependent manner by bestatin, an LAP inhibitor, indicating that the alteration of endogenous LAP activity results in these obviously fluorescent signal responses. It is worth noting that DCM-Leu features striking characteristics such as a large Stokes shift (similar to 205 nm), superior selectivity, and strong photostability responding to LAP. Impressively, not only did we successfully exemplify DCM-Leu in situ ratiometric trapping and quantification of endogenous LAP activity in various types of living cells, but also, with the aid of three-dimensional confocal imaging, the intracellular LAP distribution is clearly observed from different perspectives for the first time, owing to the high signal-to-noise of ratiometric NIR. fluorescent response. Collectively, these results demonstrate preclinical potential value of DCM-Leu serving as a useful NIR fluorescent probe for early detection of LAP-associated disease, and screening inhibitor.
引用
收藏
页码:26622 / 26629
页数:8
相关论文
共 50 条
  • [1] A near-infrared fluorescent probe for monitoring leucine aminopeptidase in living cells
    Chai, Yun
    Gao, Yuting
    Xiong, Huiwen
    Lv, Wanqian
    Yang, Guichun
    Lu, Cuifen
    Nie, Junqi
    Ma, Chao
    Chen, Zuxing
    Ren, Jun
    Wang, Feiyi
    ANALYST, 2019, 144 (02) : 463 - 467
  • [2] In vivo ratiometric tracking of endogenous β-galactosidase activity using an activatable near-infrared fluorescent probe
    Shi, Limin
    Yan, Chenxu
    Ma, Yiyu
    Wang, Ting
    Guo, Zhiqian
    Zhu, Wei-Hong
    CHEMICAL COMMUNICATIONS, 2019, 55 (82) : 12308 - 12311
  • [3] An activatable ratiometric near-infrared fluorescent probe for hydrogen sulfide imaging in vivo
    Wu, Luyan
    Zeng, Wenhui
    Feng, Liandong
    Hu, Yuxuan
    Sun, Yidan
    Yan, Yingxiao
    Chen, Hong-Yuan
    Ye, Deju
    SCIENCE CHINA-CHEMISTRY, 2020, 63 (05) : 741 - 750
  • [4] An activatable ratiometric near-infrared fluorescent probe for hydrogen sulfide imaging in vivo
    Luyan Wu
    Wenhui Zeng
    Liandong Feng
    Yuxuan Hu
    Yidan Sun
    Yingxiao Yan
    HongYuan Chen
    Deju Ye
    Science China(Chemistry) , 2020, (05) : 741 - 750
  • [5] An activatable ratiometric near-infrared fluorescent probe for hydrogen sulfide imaging in vivo
    Luyan Wu
    Wenhui Zeng
    Liandong Feng
    Yuxuan Hu
    Yidan Sun
    Yingxiao Yan
    Hong-Yuan Chen
    Deju Ye
    Science China(Chemistry), 2020, 63 (05) : 741 - 750
  • [6] An activatable ratiometric near-infrared fluorescent probe for hydrogen sulfide imaging in vivo
    Luyan Wu
    Wenhui Zeng
    Liandong Feng
    Yuxuan Hu
    Yidan Sun
    Yingxiao Yan
    Hong-Yuan Chen
    Deju Ye
    Science China Chemistry, 2020, 63 : 741 - 750
  • [7] In vivo imaging of leucine aminopeptidase activity in drug-induced liver injury and liver cancer via a near-infrared fluorescent probe
    He, Xinyuan
    Li, Lihong
    Fang, Yu
    Shi, Wen
    Li, Xiaohua
    Ma, Huimin
    CHEMICAL SCIENCE, 2017, 8 (05) : 3479 - 3483
  • [8] A new near-infrared ratiometric fluorescent probe for hydrazine
    He, Yangyang
    Li, Zhanxian
    Shi, Bingjie
    An, Zhen
    Yu, Mingming
    Wei, Liuhe
    Ni, Zhonghai
    RSC ADVANCES, 2017, 7 (41): : 25634 - 25639
  • [9] A novel near-infrared fluorescent probe for real-time monitoring of leucine aminopeptidase activity and metastatic tumor progression
    Jin, Chen
    Yang, Longyang
    Fang, Ning
    Li, Bowen
    Zhu, Hai-Liang
    Li, Zhen
    TALANTA, 2024, 275
  • [10] An activatable near-infrared fluorescent probe for tracking nitroxyl in vitro and in vivo
    Zhou, Zhe
    Xia, Xiaofeng
    Li, Zheng
    Zhou, Tianshuo
    Wang, Erfei
    Ma, Chao
    Lu, Cuifen
    Nie, Junqi
    Yang, Guichun
    Wang, Juan
    Fan, Guorun
    Ren, Jun
    Wang, Feiyi
    DYES AND PIGMENTS, 2023, 209